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Abstract

Model reduction for dynamical systems is a promising approach for reducing the computational
cost of large-scale physics-based simulations to enable high-fidelity models to be used in many-
query (e.g., Bayesian inference) and near-real-time (e.g., fast-turnaround simulation) contexts.
While model reduction works well for specialized problems such as linear time-invariant systems,
it is much more difficult to obtain accurate, stable, and efficient reduced-order models (ROMs) for
systems with general nonlinearities. This report describes several advances that enable nonlinear
reduced-order models (ROMs) to be deployed in a variety of time-critical settings.

First, we present an error bound for the Gauss–Newton with Approximated Tensors (GNAT)
nonlinear model reduction technique. This bound allows the state-space error for the GNAT
method to be quantified when applied with the backward Euler time-integration scheme. Second,
we present a methodology for preserving classical Lagrangian structure in nonlinear model re-
duction. This technique guarantees that important properties—such as energy conservation and
symplectic time-evolution maps—are preserved when performing model reduction for models
described by a Lagrangian formalism (e.g., molecular dynamics, structural dynamics). Third,
we present a novel technique for decreasing the temporal complexity—defined as the number of
Newton-like iterations performed over the course of the simulation—by exploiting time-domain
data. Fourth, we describe a novel method for refining projection-based reduced-order models
a posteriori using a goal-oriented framework similar to mesh-adaptive h-refinement in finite ele-
ments. The technique allows the ROM to generate arbitrarily accurate solutions, thereby providing
the ROM with a ‘failsafe’ mechanism in the event of insufficient training data. Finally, we present
the reduced-order model error surrogate (ROMES) method for statistically quantifying reduced-
order-model errors. This enables ROMs to be rigorously incorporated in uncertainty-quantification
settings, as the error model can be treated as a source of epistemic uncertainty.

This work was completed as part of a Truman Fellowship appointment. We note that much
additional work was performed as part of the Fellowship. One salient project is the development
of the Trilinos-based model-reduction software module Razor, which is currently bundled with the
Albany PDE code and currently allows nonlinear reduced-order models to be constructed for any
application supported in Albany. Other important projects include the following:

1. ROMES-equipped ROMs for Bayesian inference: K. Carlberg, M. Drohmann, F. Lu (Lawrence
Berkeley National Laboratory), M. Morzfeld (Lawrence Berkeley National Laboratory).

2. ROM-enabled Krylov-subspace recycling: K. Carlberg, V. Forstall (University of Maryland),
P. Tsuji, R. Tuminaro.

3. A pseudo balanced POD method using only dual snapshots: K. Carlberg, M. Sarovar.

4. An analysis of discrete v. continuous optimality in nonlinear model reduction: K. Carlberg,
M. Barone, H. Antil (George Mason University).

Journal articles for these projects are in progress at the time of this writing.
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Chapter 1

Preserving Lagrangian structure in
nonlinear model reduction with application
to structural dynamics

This chapter presents a methodology for preserving classical Lagrangian structure when perform-
ing model reduction on nonlinear dynamical systems described by a Lagrangian formalism. The
method guarantees that intrinsic properties such as energy conservation are preserved by the reduced-
order model. Important applications include molecular dynamics and structural dynamics; numer-
ical experiments are executed on a structural-dynamics example. This work has been submitted to
the SIAM Journal on Scientific Computing and is past the first round of revisions at the time of
this writing.
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PRESERVING LAGRANGIAN STRUCTURE IN
NONLINEAR MODEL REDUCTION WITH

APPLICATION TO STRUCTURAL DYNAMICS

KEVIN CARLBERG∗, RAY TUMINARO† , AND PAUL BOGGS‡

Abstract. This work proposes a model-reduction methodology that preserves Lagrangian structure and achieves com-
putational efficiency in the presence of high-order nonlinearities and arbitrary parameter dependence. As such, the resulting
reduced-order model retains key properties such as energy conservation and symplectic time-evolution maps. We focus on
parameterized simple mechanical systems subjected to Rayleigh damping and external forces, and consider an application to
nonlinear structural dynamics. To preserve structure, the method first approximates the system’s ‘Lagrangian ingredients’—the
Riemannian metric, the potential-energy function, the dissipation function, and the external force—and subsequently derives
reduced-order equations of motion by applying the (forced) Euler–Lagrange equation with these quantities. From the algebraic
perspective, key contributions include two efficient techniques for approximating parameterized reduced matrices while preserv-
ing symmetry and positive definiteness: matrix gappy POD and reduced-basis sparsification (RBS). Results for a parameterized
truss-structure problem demonstrate the practical importance of preserving Lagrangian structure and illustrate the proposed
method’s merits: it reduces computation time while maintaining high accuracy and stability, in contrast to existing nonlinear
model-reduction techniques that do not preserve structure.

Key words. nonlinear model reduction, structure preservation, Lagrangian dynamics, Hamiltonian dynamics, structural
dynamics, positive definiteness, matrix symmetry

1. Introduction. Computational modeling and simulation for parameterized simple mechanical sys-
tems characterized by a Lagrangian formalism has become indispensable across a variety of industries. For
example, computational structural dynamics tools have become widely used in applications ranging from
aerospace to biomedical-device design; molecular-dynamics simulations have gained popularity in materials
science and biology. However, the high computational cost incurred by simulating large-scale simple me-
chanical systems can result in simulation times on the order of weeks. As a result, these simulation tools are
impractical for time-critical applications such as nondestructive evaluation for structural health monitoring,
multiscale modeling, design optimization, and uncertainty quantification.

Model-reduction methods present a promising approach for addressing time-critical problems. During
the offline stage, these methods perform computationally expensive ‘training’ tasks, which may include eval-
uating the high-fidelity model for several instances of the system parameters and computing a representative
low-dimensional subspace for the configuration variables. Then, during the inexpensive online stage, these
methods quickly compute approximate solutions for arbitrary parameter values via a projection process of
the high-fidelity-model equations onto this low-dimensional subspace; they also introduce other approxima-
tions when nonlinearities are present. This offline/online strategy is effective in two scenarios: ‘many query’
problems (e.g., Bayesian inference), where the high offline cost is amortized over many online evaluations,
and real-time problems (e.g., control) characterized by stringent constraints on online evaluation time.

Generating a reduced-order model that preserves the Lagrangian structure intrinsic to mechanical sys-
tems is not a trivial task. Such structure is critical to preserve, as it leads to fundamental properties such
as energy conservation, conservation of quantities associated with symmetries in the system, and symplectic
time-evolution maps. In fact, the class of structure-preserving time integrators (e.g., geometric integrators
[17], variational integrators [21]) has been developed to ensure that the discrete solution to the high-fidelity
model associates with the time-evolution map of a (modified) Lagrangian system.

Lall et al. [20] show that performing a Galerkin projection on the Euler–Lagrange equation—as opposed
to the first-order state-space form—leads to a reduced-order model that preserves Lagrangian structure.
However, the computational cost of assembling the associated low-dimensional equations of motion scales
with the dimension of the high-fidelity model. For this reason, this approach is efficient only when the low-
dimensional operators can be assembled a priori ; this occurs only in very limited cases e.g., when operators
have a low-order polynomial dependence on the state and are affine in functions of the parameters [24].

Several methods have been developed in the context of nonlinear-ODE model reduction that can reduce

∗Harry S. Truman Fellow, Quantitative Modeling & Analysis Department ktcarlb@sandia.gov
†Numerical Analysis and Applications Department, rstumin@sandia.gov
‡Quantitative Modeling & Analysis Department (retired), ptboggs@sandia.gov
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the computational cost of assembling the low-dimensional equations of motion. However, these methods de-
stroy Lagrangian structure when applied to simple mechanical systems. For example, collocation approaches
[3, 25] perform a Galerkin projection on only a small subset of the full-order equations characterizing the
high-fidelity model. The discrete empirical interpolation method (DEIM) [9, 15, 11] and gappy proper
orthogonal decomposition (POD) method [13, 6, 7] compute a few entries of the vector-valued nonlinear
functions, and then approximate the uncomputed entries by interpolation or least-squares regression with
an empirically derived basis. Galerkin projection can then be performed with the approximated functions.

The goal of this work is to devise a reduced-order model for nonlinear simple mechanical systems with
general parameter dependence that leads to computationally inexpensive online solutions and preserves La-
grangian structure. We focus particularly on parameterized structural-dynamics models under Rayleigh
damping and external forces. The methodology we propose constructs a reduced-order model by first ap-
proximating the ‘Lagrangian ingredients’ (i.e., quantities defining the problem’s Lagrangian structure) and
subsequently deriving the equations of motion by applying the Euler–Lagrange equation to these ingredients.
The method approximates the Lagrangian ingredients as follows:

I. Configuration space. The low-dimensional configuration space is derived using standard dimension-
reduction techniques, e.g., proper orthogonal decomposition, modal decomposition.

II. Riemannian metric. The Riemannian metric is defined by a (parameterized) low-dimensional symmetric
positive-definite matrix. We propose two efficient methods for approximating this low-dimensional
matrix that preserve symmetry and positive definiteness.

III. Potential-energy function. The potential energy function is approximated by employing the origi-
nal potential-energy function, but with the low-dimensional reduced-basis matrix replaced by a low-
dimensional sparse matrix with only a few nonzero rows. This sparse matrix is computed online by
matching the gradient of the reduced potential to first order about equilibrium.

IV. Dissipation function. The damping matrix associated with the Rayleigh dissipation function is a linear
combination of the mass matrix (which defines the Riemannian metric) and the Hessian of the potential.
Thus, we form the approximated Rayleigh dissipation function in the same fashion, but employ the
approximated mass matrix from ingredient II and approximated potential from ingredient III.

V. External force. The external force is derived by applying the Lagrange–D’Alembert principle with
variations in the configuration space. We approximate this by applying gappy POD reconstruction to
the external force as expressed in the original coordinates. As a result, the external force appearing in
the reduced-order equations of motion can be derived by applying the Lagrange–D’Alembert principle
to this modified external force with variations restricted to the low-order configuration space.

We note that a structure-preserving method [5] has been recently proposed for nonlinear port-Hamiltonian
systems, which are generalizations of Hamiltonian systems. While this technique guarantees that properties
such as stability and passivity are preserved, it does not in fact preserve Lagrangian or classical Hamiltonian
structure.1

The remainder of the paper is organized as follows. Section 2 introduces the Lagrangian-mechanics
formulation. Section 3 outlines existing model-reduction techniques and highlights the need for an efficient,
structure-preserving method. Section 4 presents the proposed method. As hinted above, preserving structure
for Lagrangian ingredient II is equivalent to efficiently approximating a low-dimensional reduced matrix while
preserving symmetry and positive definiteness. This algebraic task is relevant to a broad scope of applications,
e.g., approximating extreme eigenvalues/eigenvectors of a parameterized matrix, preserving Hessian positive
definiteness in optimization algorithms. For this reason, Section 5 presents approximation techniques for
Lagrangian ingredient II in a stand-alone algebraic setting that does not rely on the Lagrangian formalism.
Similarly, Section 6 considers Lagrangian ingredient III in a purely algebraic context. Section 7 presents
numerical experiments applied to a simple mechanical system from structural dynamics. Finally, Section 8
summarizes the contributions and suggests further research.

We note that the model-reduction methods proposed in this work also preserve Hamiltonian structure
when the Hamiltonian formulation of classical mechanics is used. Finally, the label prefix ‘S’ indicates content
included as supplementary material.

1In particular, the resulting reduced-order equations of motion cannot be derived from approximated ingredients such as
those enumerated above; as a consequence, the approach does not ensure symplecticity or energy conservation for conservative
systems, for example.
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2. Lagrangian dynamics formulation. We consider nonlinear simple mechanical systems defined
by a parameterized triple (Q, g, V ); system parameters µ ∈ D with parameter domain D may describe, for
example, variations in material properties. The triple is composed of:

• A differentiable configuration manifold Q. We take Q = RN where N denotes the number of degrees
of freedom in the model, considered to be ‘large’ in this work.

• A parameterized Riemannian metric g(v,w;µ), where v and w belong to the tangent bundle of
Q. We take g(v,w;µ) = vTM (µ)w, where M (µ) denotes the N × N parameterized symmetric
positive-definite mass matrix.

• A parameterized potential-energy function V : Q × D → R, where the mapping (q;µ) 7→ V is
nonlinear in both arguments.

The kinetic energy of a simple mechanical system can be expressed as T (q̇;µ) = 1
2g(q̇, q̇;µ) =

1
2 q̇TM (µ)q̇, where q : [0,T] → Q denotes the time-dependent configuration variables and T denotes the
final time. This leads to the following expression for the Lagrangian, which represents the difference between
the kinetic and potential energies:

L(q, q̇;µ) =
1

2
g (q̇, q̇;µ)− V (q;µ) =

1

2
q̇TM (µ)q̇− V (q;µ). (2.1)

The non-conservative forces2 often consist of an applied external force and a dissipative force arising from
Rayleigh viscous damping. This dissipative force derives from a positive-semidefinite dissipation function3

F (q̇;µ) ≡ 1

2
q̇TC (µ)q̇, (2.2)

where C (µ) = αM (µ) +β∇qqV (q0 (µ) ;µ) denotes a parameterized N ×N symmetric positive-semidefinite
matrix with α ∈ R and β ∈ R. Here, q0 : D → RN denotes the (parameterized) equilibrium configuration
such that ∇qV (q0 (µ) ;µ) = 0. So, we consider non-conservative forces of the form f (q, q̇, t;µ)−∇q̇F (q̇;µ),
where f denotes the external force that is derived from the Lagrange–D’Alembert variational principle.

Given the Lagrangian (2.1), one can derive the equations of motion for a simple mechanical system
subject to an external force and Rayleigh viscous damping from the forced Euler–Lagrange equation

d

dt
∇q̇L(q, q̇;µ)−∇qL(q, q̇;µ) = f (q, q̇, t;µ)−∇q̇F (q̇;µ). (2.3)

Substituting Eqs. (2.1) and (2.2) into Eq. (2.3) leads to the familiar equations of motion

M (µ)q̈ + C (µ)q̇ +∇qV (q;µ) = f (q, q̇, t;µ) . (2.4)

Conservative mechanical systems, where f (q, q̇, t;µ) = 0 and C (µ) = 0, exhibit important properties
and can be characterized using the (conservative) Hamiltonian formulation of classical mechanics. For
example, these systems conserve energy and quantities associated with symmetry, and their time-evolution
maps are symplectic. Because these properties are intrinsic characteristics of the mechanical systems, it is
desirable for numerical methods and approximations to preserve these properties. For this reason, we aim
to develop an efficient reduced-order model that preserves Lagrangian structure. The specific properties we
seek to preserve were enumerated in Section 1: a configuration space, a parameterized Riemannian metric,
a parameterized potential-energy function, a parameterized positive-semidefinite dissipation function, and
an external force derived from the Lagrange–D’Alembert principle. The first three properties constitute the
parameterized triple defining a simple mechanical system; the last two characterize non-conservative forces.

3. Existing model-reduction techniques. Model-reduction techniques aim to generate a low-
dimensional model that is inexpensive to evaluate, yet captures the essential features of the high-fidelity
model. These methods first conduct a computationally expensive offline stage during which they perform
analyses (e.g., solving equations of motion, modal analyses) for a training set {µi}pi=1 ⊂ D. The training set
can be obtained by any design of experiments approach for sampling the parameter domain D, e.g., Latin

2Conservative forces can be handled by directly including them in the Lagrangian.
3Non-viscously damped systems can also often be derived by a positive-semidefinite dissipation function [1].
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hypercube sampling [22], greedy sampling [16]. Then, they employ data generated during these analyses
to define a low-dimensional configuration manifold, and other approximations to achieve efficiency in the
presence of nonlinearities. The resulting low-dimensional model can then be used to perform inexpensive
analyses for any specified point µ? ∈ D during the online stage.

When the configuration space is Euclidean (as is the case for the models considered herein), the config-
uration space of reduced dimension n� N can be expressed as

Qr ≡ {q̄(µ) + Vqr | qr ∈ Qr}, (3.1)

where q̄(µ) : D → RN denotes the (parameterized) reference configuration about which the affine reduced
subspace is centered, Qr = Rn, and V ∈ RN×n∗ defines a (typically dense) parameter-independent matrix
whose columns can be interpreted as a reduced basis spanning an n-dimensional subspace of RN . Here,
Rm×n∗ denotes the noncompact Stiefel manifold: the set of full-column-rank m × n matrices. This leads to
the following expression for the generalized coordinates and their derivatives:

q = q̄(µ) + Vqr, q̇ = Vq̇r, q̈ = Vq̈r. (3.2)

Thus, the low-dimensional configuration space can be described in terms of low-dimensional generalized
coordinates qr ∈ Qr or in terms of original coordinates by Eq. (3.2). The basis V can be determined by a
variety of techniques, including proper orthogonal decomposition and modal decomposition.

3.1. Galerkin projection. Model reduction based on Galerkin projection preserves Lagrangian struc-
ture. As pointed out by Lall et al. [20], the Galerkin projection must be carried out on the Euler–Lagrange
equation (2.3)—not the first-order state-space form—in order to preserve this structure. Following their
approach, Galerkin-projection-based methods replace the original configuration space Q by the reduced-
order configuration space Qr and subsequently derive equations of motion in the usual way using a set of
lower-dimensional coordinates. The model then has structure identical to that of the original problem.

For simple mechanical systems subject to non-conservative forces, this amounts to defining the La-
grangian as

Lr(qr, q̇r;µ) ≡ L(q̄(µ) + Vqr,Vq̇r;µ) =
1

2
q̇r
TVTM (µ)Vq̇r − V (q̄(µ) + Vqr;µ) (3.3)

and the dissipation function as

Fr (q̇r;µ) ≡ F (Vq̇r;µ) =
1

2
q̇r
TVTC (µ)Vq̇r.

The external force derived from the Lagrange–D’Alembert variational principle is transformed by (3.2) into

fr (qr, q̇r, t;µ) ≡ VT f (q̄(µ) + Vqr,Vq̇r, t;µ) .

Following Section 2, the forced Euler–Lagrange equation applied to the Lagrangian Lr, the dissipation
function Fr, and the external force fr leads to the reduced-order equations of motion

d

dt
∇q̇r

Lr(qr, q̇r;µ)−∇qr
Lr(qr, q̇r;µ) +∇q̇r

Fr (q̇r;µ) = fr (qr, q̇r, t;µ) . (3.4)

This can be rewritten as

VTM (µ)Vq̈r + VTC (µ)Vq̇r + VT∇qV (q̄(µ) + Vqr;µ) = VT f (q̄(µ) + Vqr,Vq̇r, t;µ) . (3.5)

Note that Eq. (3.5) could have been derived by applying Galerkin projection to the original Euler–Lagrange
equation (2.4), i.e., making substitutions (3.2) and pre-multiplying the system of equations by VT .

Thus, the Galerkin reduced-order model preserves Lagrangian structure as it preserves all five properties:
I. a configuration space Qr = Rn, which relates to the original configuration space by Eq. (3.1),

II. a parameterized Riemannian metric gr (vr,wr;µ) = vTr VTM (µ)Vwr,
III. a parameterized potential-energy function Vr(qr;µ) = V (q̄(µ) + Vqr;µ),
IV. a parameterized positive-semidefinite dissipation function Fr(q̇r;µ) = 1

2 q̇r
TVTC (µ)Vq̇r, and

V. an external force fr derived from applying the Lagrange–D’Alembert principle to the original external
force f , but restricted to variations in the configuration space Qr.
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3.1.1. Computational bottleneck. Although the equations of motion (3.5) are low dimensional, they
remain computationally expensive to solve when the operators exhibit arbitrary parameter dependence and
the potential is nonlinear. The reason is simple: computing the low-dimensional components of Eq. (3.5)
incurs large-scale operations due to the density of V. For example, computing VTM (µ?)V online incurs
O(Nωn + Nn2) flops, where ω denotes the average number of nonzeros per row of the matrix M (µ?). If
the potential energy V exhibits a (general) nonlinear dependence on coordinates q, the vector ∇qV (q̄(µ) +
Vqr;µ

?) and product VT∇qV must be computed for every instance of qr.
Remark 1. If the mass matrix is affine in functions of the parameters M (µ) =

∑mM

i αi(µ)Mi

with αi : D → R, Mi ∈ RN×N , and mM � N , then products VTMiV can be assembled offline, and
VTM (µ?)V =

∑mM

i αi(µ
?)
[
VTMiV

]
can be computed inexpensively, i.e., in O(mMn

2) floating-point
operations (flops) during the online stage [19, 23]. Similar low-complexity results can be obtained for the
other terms if they can be similarly expressed in separable form. However, affine parameter dependence is a
quite limiting scenario and does not generally hold.

3.2. Complexity reduction. Several techniques have been developed to mitigate the computational
bottleneck described in Section 3.1.1. Before applying projection, these methods compute (or sample) only
a few entries of the vector-valued functions. In effect, this complexity-reduction strategy is equivalent to
employing a sparse left-projection test basis, which leads to N -independent operation counts if the vector-
valued functions exhibit H-independence (i.e., vector-valued functions have sparse Jacobians). Such methods
have been successfully applied to ODEs that do not exhibit particular structure. However, when applied to
mechanical systems described by Lagrangian mechanics, these techniques destroy Lagrangian structure.

3.2.1. Collocation. Collocation approaches [3, 25] compute only a subset of the full-order equations
of motion (2.4) before applying Galerkin projection. That is, they approximate Eq. (3.5) as

VTPPTM (µ)Vq̈r + VTPPTC (µ)Vq̇r + VTPPT∇qV (q̄(µ) + Vqr;µ)

= VTPPT f (q̄(µ) + Vqr,Vq̇r, t;µ).
(3.6)

Here, P ∈ {0, 1}N×m is a (full-column-rank) ‘sampling matrix’ consisting of m selected columns of the N×N
identity matrix.4 If one considers the matrix PPTV as defining a basis for a test space, Eq. (3.6) can be
viewed as a Petrov–Galerkin projection.

Computing the components of Eq. (3.6) is inexpensive in the case of H-independence, i.e., when the
matrices M, C, ∇qqV , ∇qf , and ∇q̇f are sparse. To see this, consider the first term in Eq. (3.6): computing(
VTP

) (
PTM (µ?)

)
V for specific online point µ? ∈ D incurs O(mωn+mn2) flops. This cost is small if the

sparsity measure of M is small, i.e., ω � N .
However, this cost-reduction approach destroys the problem’s structure, as it does not preserve the

following Lagrangian properties described in Section 2:
II. The mass matrix VTPPTM (µ)V is not symmetric, so it does not define a metric.

III. The term VTPPT∇qqV (q̄(µ) + Vqr;µ)V is not symmetric, so it cannot be the Hessian of a
potential-energy function.

IV. The damping matrix VTPPTC (µ)V is not symmetric, so it does not derive from a dissipation
function.

Note that Property I is trivially satisfied, as the configuration space can be described as Qr = Rn and
relates to the original configuration space by Eq. (3.1). Further, Property V is satisfied, because the non-
conservative forces can be derived by applying the Lagrange–D’Alembert variational principle to a modified
external force PPT f (q, q̇, t;µ), but restricted to variations in the (true) configuration space Qr.

3.2.2. DEIM/gappy POD. Discrete empirical interpolation [9, 15, 11] and gappy POD [13, 6, 7]
approximate via least-squares regression the nonlinear or non-affine vector-valued functions appearing in
Eq. (2.4); these include M (µ)q̈, C (µ)q̇, ∇qV (q;µ), and f (q, q̇, t;µ). Because these approaches approximate
each term in the governing equations separately, they often achieve higher accuracy than collocation.

During the offline stage, these methods construct an orthogonal basis Wθ ∈ RN×nθ with nθ ≤ m for
each nonlinear function θ(t;µ) appearing in the equations of motion; typically, the basis Wθ is computed

4Note that the sampling matrix—when acting on a vector—returns a subset (or sample) of its entries. Here, the term
‘sampling’ does not imply snapshot collection.
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empirically via proper orthogonal decomposition (POD). This consists of two steps: 1) collect snapshots
Xθ = {θ(t;µ) | t ∈ Tsample(µ), µ ∈ {µi}}, where Tsample(µ) ⊂ [0,T] designates the time instances taken by
the time-integration method for the training simulation; and 2) compute Wθ by Algorithm S1 using Xθ and
an energy criterion ηθ ∈ [0, 1] as inputs.

During the online stage, these methods approximate the nonlinear function as

θ(t;µ) ≈Wθ[PTWθ]+PTθ(t;µ), (3.7)

where a superscript + denotes the Moore–Penrose pseudoinverse.
As with collocation, this approximation technique leads to computational-cost savings during the online

stage if computing PTθ(t;µ) incurs a flop count independent of N , i.e., θ(t;µ) exhibits H-independence.
Substituting least-squares approximations for the nonlinear functions into Eq. (3.5) yields the approximated
reduced-order equations of motion

YMq̈r
M (µ)Vq̈r + YCq̇r

C (µ)Vq̇r + Y∇qV∇qV (q̄(µ) + Vqr;µ) = Yf f (q0 (µ) + Vqr,Vq̇r, t;µ) .

Here, we have used the notation Yθ ≡ VTWθ

[
PTWθ

]+
PT , and the subscript of Y and W denotes the

function for which the approximation has been constructed.
Unfortunately, this approximation method also destroys the Lagrangian structure. As before, Lagrangian

properties II–IV are lost because the reduced mass, stiffness, and damping matrices are not symmetric.

4. Efficient, structure-preserving model reduction. The main idea of the proposed approach is
to directly approximate the quantities defining the Lagrangian structure of the Galerkin-projection reduced-
order model, and subsequently derive the equations of motion. Section 3.1 enumerates these quantities for
the simple mechanical systems considered herein. Approximations to these ingredients should 1) preserve
salient properties, 2) lead to computationally inexpensive reduced-order-model simulations, and 3) incur
minimal approximation error. To this end, we propose a model defined by

I. a configuration space Qr = Rn, which relates to the original coordinates by Eq. (3.1),
II. an approximated Riemannian metric g̃r,

III. an approximated potential-energy function Ṽr,
IV. an approximated positive-semidefinite dissipation function F̃r, and
V. an approximated external force f̃r derived from applying the Lagrange–D’Alembert principle to an

approximated force f̃ represented in the original coordinates, but limited to variations in the reduced
configuration space Qr.

We derive the equations of motion by applying the forced Euler–Lagrange equation with these approxima-
tions:

d

dt
∇q̇r L̃r(qr, q̇r;µ)−∇qr

L̃r(qr, q̇r;µ) +∇q̇r
F̃r (q̇r;µ) = f̃r (qr, q̇r, t;µ) , (4.1)

where the approximated Lagrangian is defined as

L̃r(qr, q̇r;µ) ≡ 1

2
g̃r(q̇r, q̇r;µ)− Ṽr(qr;µ). (4.2)

Note that Eq. (4.1) approximates Eq. (3.4), while Eq. (4.2) approximates Eq. (3.3).
Figure 4.1 depicts the strategy graphically. Note that the proposed method is not equivalent to carrying

out a Galerkin projection on the original equations of motion (2.4), as it employs a different technique
to approximate each quantity in the Galerkin reduced-order equations of motion (3.5). The next sections
describe two proposed methods that align with this strategy for structure preservation. For reference, Table
4.1 reports components of the equations of motion for these methods.

4.1. Riemannian-metric approximation g̃r. The function gr : (vr,wr;µ) 7→ vTr VTM (µ)Vwr is
defined by a low-dimensional symmetric positive-definite matrix VTM (µ)V. To ensure structure preserva-
tion, we propose computing an approximated Riemannian metric g̃r : Rn × Rn ×D → R as

g̃r(v1,v2;µ) ≡vT1 M̃ (µ) v2, (4.3)
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(a) Existing complexity-reduction methods (see Sec-
tion 3.2). By approximating the equations of motion, such
methods destroy Lagrangian structure.
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(b) Proposed approach. By approximating Lagrangian
ingredients before deriving the equations of motion, the
approach preserves Lagrangian structure.

Fig. 4.1. Comparing existing complexity-reduction approaches with the proposed approach. A dashed arrow implies a
complexity-reduction approximation.

method
mass damping potential-energy external str. low

matrix matrix gradient force pres. cost

Galerkin VTM (µ)V VTC (µ)V VT∇qV (q0 (µ) + Vqr;µ) VT f yes no

collocation VTPPTM (µ)V VTPPTC (µ)V VTPPT∇qV (q0 (µ) + Vqr;µ) VTPPT f no yes

gappy POD YMq̈rM (µ)V YCq̇rC (µ)V Y∇qV∇qV (q0 (µ) + Vqr;µ) Yf f no yes

proposal 1 UM
TM (µ)UM

αUM
TM (µ)UM+

UV
T∇qV (q0 (µ) + UV qr;µ) Yf f yes yes

βUV
T∇qqV (q0 (µ) ;µ)UV

proposal 2
nM∑
i=1

ξiM(µ)VTMiV
α

nM∑
i=1

ξiM(µ)VTMiV+
UV

T∇qV (q0 (µ) + UV qr;µ) Yf f yes yes

βUV
T∇qqV (q0 (µ) ;µ)UV

Table 4.1
Terms appearing in the equations of motion for various model-reduction techniques. Here, Yθ ≡ VTWθ

[
PTWθ

]+
PT

and Uθ ≡ PUθ. In principle, a different sampling matrix P could be used for each approximation; however, such an approach
would complicate the online implementation, as each term would require a different ‘sample mesh’ [7].

where M̃ (µ) is an n× n matrix that must be symmetric and positive definite.

Section 5 describes the algebraic problem of approximating this matrix and proposes two structure-
preserving techniques for computing the approximation M̃ (µ). The first method (proposal 1 in Table 4.1)
employs the reduced-basis sparsification of Section 5.1 and approximates M̃ (µ) via Eq. (5.1). The second
method (proposal 2 in Table 4.1) employs the matrix gappy POD of Section 5.2 and approximates this
matrix by Eq. (5.8). Procedures 2 (Section 5.1) and 3 (Section 5.2) provide the offline/online steps.

4.2. Potential-energy-function approximation Ṽr. Because only ∇qr Ṽr appears in the reduced-
order equations of motion (see Eqs. (4.1)–(4.2)), the task of approximating the potential energy should focus
on accurately representing its gradient. Section 6 describes this algebraic task and proposes approximating
the reduced potential energy according to Eq. (6.1). We adopt this approximation, and also set the reference
configuration to equilibrium q̄ = q0 to avoid the limitations associated with other choices (see the discussion
in Section 6). Procedure 4 of Section 6.2 describes the offline/online steps for this approximation.

4.3. Dissipation-function approximation Fr. To maintain the Rayleigh-damping structure, we
simply approximate the damping matrix as a linear combination of the approximated mass matrix and
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Hessian of the potential at equilibrium

F̃r (v;µ) =
α

2
vTM̃ (µ) v +

β

2
vT∇qrqr

Ṽr(0;µ)v,

where α and β are the Rayleigh damping coefficients defined in Section 2.

4.4. External-force approximation f̃r. The following form of the approximated external force pre-
serves structure, i.e., ensures it is derived from applying the Lagrange–D’Alembert principle to an approxi-
mated force f̃ limited to variations in the reduced configuration space Qr:

f̃r (qr, q̇r, t;µ) ≡ VT f̃ (q, q̇, t;µ) . (4.4)

Thus, this approximation amounts to computing f̃ (q, q̇, t;µ)—an approximation to the vector-valued func-
tion f (q, q̇, t;µ). That is, we assign no special mathematical properties to f aside from the fact that it is a
vector. One way to accomplish this is by the DEIM/gappy POD approach described in Section 3.2.2.

The error in this approximation can be bounded using a result derived from the error in the gappy POD
approximation of f (e.g., see [7, Appendix D]). We obtain

‖f̃r − fr‖2 ≤ ‖
(
I−Wf

[
PTWf

]+
PT
)

f‖2 ≤ ‖R−1‖2‖
(
I−WfW

T
f

)
f‖2,

where Wf is an orthogonal basis used to represent the external force, and PTWf = QR is the thin QR matrix
factorization. This result assumes that PTWf has full rank. Thus, the accuracy of this approximation relies
both on the sampling matrix PT and how close f is to the range of Wf . To achieve accuracy, we compute
Wf via POD, which minimizes the average value of ‖

(
I−WfW

T
f

)
f‖22 over the training data. Procedure 1

provides the offline and online steps for implementing the external-force approximation.

Procedure 1: External-force approximation via gappy POD

Offline stage

1 Collect snapshots of the external force Xf ≡ {f (q, q̇, t;µ) | µ ∈ {µi}, t ∈ Tsample(µ)}
2 Compute a POD basis Wf using Algorithm S1 with inputs Xf and ηf ∈ [0, 1].
3 Determine the sampling matrix P.

4 Compute the low-dimensional matrix Yf = VTWf

[
PTWf

]+
.

Online stage (given µ?)

1 Compute m� N entries of the external force PT f (q, q̇, t;µ?).

2 Compute the low-dimensional matrix–vector product Yf

[
PT f (q, q̇, t;µ?)

]
.

4.4.1. Exactness conditions. Exactness conditions are similar to those that will be described in
Section 5.2.3 for the matrix gappy POD approximation. In the general case where m < N , if f = 0,
then the approximation is exact, i.e., f̃r = fr. If instead f has at least one non-zero entry, then sufficient
conditions for an exact approximation are 1) f ∈ range (Wf ) and 2) PTWf has full column rank. The first
of these conditions holds, for example, when Wf is computed via POD, the POD basis is not truncated, f
is independent of q and q̇, µ? ∈ {µi}, and if a snapshot of the external force was collected at the considered
time instance. The second of these can be enforced by the method for choosing P. In the full-sampling case
where m = N , condition 2 holds automatically, so we only require condition 1 in this case.

5. Preserving matrix symmetry and positive definiteness. This section presents approximation
techniques for Lagrangian ingredient II (see Section 4.1) in an algebraic setting. Let A (µ) denote an N ×N
parameterized symmetric positive-definite (possibly dense) matrix. We consider the following online problem:

(P1) At a cost independent of N , compute a symmetric positive-definite matrix Ã (µ?) that is
appropriately close to the matrix VTA (µ?)V for any online point µ? ∈ D.
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Directly computing VTA (µ?)V is not a viable solution to this problem, as it requires computing all O(N2)
entries of the matrix A (µ?) due to the density of V. We assume only that computing a single entry of
A (µ?) for any online point µ? ∈ D is inexpensive, i.e., the number of floating-point operations (flops) is
independent of N . We do not assume affine parametric dependence, and we view µ 7→ A (µ) simply as a
mechanism for generating instances of the matrix A.

We now present two methods for solving online problem (P1). Both rely on computing offline p ‘snap-
shots’ of the matrix A

(
µi
)
, i = 1, . . . , p, where µi ∈ D denotes the ith instance of the training set. Method

1 approximates the reduced matrix by projecting the full matrix onto a sparse basis, while Method 2 ap-
proximates the reduced matrix as a linear combination of pre-computed reduced matrices.

5.1. Reduced-basis sparsification (RBS). We first consider a strategy that ‘injects sparseness’ into
the matrix V. That is, we replace V by UA ∈ RN×n∗ , which has only m rows (n ≤ m � N) with nonzero
entries:

Ã (µ) = UA
TA (µ)UA. (5.1)

This sparse matrix may be expressed as UA ≡ PUA, where UA ∈ Rm×n∗ is dense. Clearly, Ã (µ) is symmetric
positive definite if A (µ) is symmetric positive definite, as UA has full column rank (it is the product of
full-column-rank matrices); thus, the approximation defined by (5.1) preserves the requisite structure. Note
that this approximation will also preserve structure in cases where A (µ) is symmetric positive semidefinite
or simply symmetric. Further, the (online) operation count for computing Ã (µ?) for online point µ? ∈ D is
independent of N . Computing PTA (µ?)P requires computing only m2 (symmetric) entries of A (µ?) and
entails O(m2) flops; subsequently computing Ã (µ?) = UA

T
[
PTA (µ?)P

]
UA entails O(m2n+mn2) flops.

Given a sampling matrix P, the matrix UA can be computed offline to minimize the average approxi-
mation error over the snapshots, i.e., according to the following optimization problem:

UA = arg min
X∈Rm×n

∗

p∑

i=1

∥∥XTPTA
(
µi
)
PX−VTA

(
µi
)
V
∥∥2

F
, (5.2)

where the subscript F denotes the Frobenius norm. To handle the fact that Rm×n∗ is an open set, optimization
problem (5.2) can first be solved over Rm×n and the solution can be subsequently projected onto Rm×n∗ ,
which is analogous to the approach taken by Vandereycken [27, Algorithm 6]. Note that problem (5.2) is a
small-scale optimization problem that can be solved at a cost independent of N during the offline stage after
the matrix snapshots A

(
µi
)
, i = 1, . . . , p and their reduced counterparts VTA

(
µi
)
V, i = 1, . . . , p have been

computed. Procedure 2 provides the offline and online steps required to implement the RBS approximation.

Procedure 2: Reduced-basis sparsification for symmetric matrices

Offline stage

1 Collect matrix snapshots A
(
µi
)
, i = 1, . . . , p.

2 Form reduced the matrices VTA
(
µi
)
V, i = 1, . . . , p.

3 Choose the sample matrix P.
4 Determine UA as the solution to problem (5.2).

Online stage (given µ?)

1 Compute PTA (µ?)P.

2 Form Ã (µ?) = UA
T
[
PTA (µ?)P

]
UA.

Remark 2. This work does not focus on methods for selecting the sampling matrix P for three
reasons. First, the standard greedy approach [4, 9] to constructing the sample matrix works well for the
proposed approximations. This is evidenced by the numerical experiments in Section 7, which employ the
GNAT sample-mesh-based adaptation [7, Algorithm 3]. Second, this standard approach leads to a single
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sample matrix, which is valid for all approximations. Using a unique sample matrix for each approximated
term implies constructing a unique sample mesh for each term, which would complicate the implementation.
Finally, the GNAT approach constructs the sample mesh using snapshots of the numerical residual across
time steps and Newton iterations. This ensures that algorithm accounts for all terms in the equations of
motion, as the residual is composed of contributions from every term. Future work entails tailoring the
sampling matrix to the particular structure-preserving approximations.

5.1.1. Exactness conditions. In the full-sampling case where m = N , the approximation is exact if
problem (5.2) is solved via a gradient-based method with an initial guess of X(0) = PTV; we do this in
practice. Under these conditions, UA = V and so Ã (µ) = VTA (µ)V.

In the general case where m < N , one can show that the approximation is exact if the matrix is
parameter-independent (i.e., A (µ) = A) and m ≥ n. This situation is considered in the discussion that
follows Theorem 5.1 below. One can also prove a more general exactness result when A (µ) exhibits the
following simple parametric dependence:

A (µ) = h1 (µ) A1 + h2 (µ) A2. (5.3)

Here, A1 and A2 are N ×N symmetric positive-definite matrices and h1, h2 : D → R. It can then be shown
that a sparse reduced basis exists that exactly captures VTA (µ)V under conditions related to how well
the eigenvalues of the sampled matrix PTA(µ)P encompass those of the reduced matrix VTA(µ)V. The
following theorem uses eigenvalue interlacing ideas to make this notion precise.

Theorem 5.1. Let A (µ) have the form given by Eq. (5.3). Then,

∃ UA ∈ Rm×n such that UA
T PT A (µ) P UA = VT A (µ) V, ∀µ ∈ D (5.4)

if and only if the generalized eigenvalues of (VTA2V,V
TA1V) interlace the generalized eigenvalues of

(PTA2P,P
TA1P), i.e.,

λ
(s)
i ≤ λ

(r)
i ≤ λ

(s)
i+m−n, i = 1, ..., n, with (5.5)

[
VTA2V

]
x

(r)
i = λ

(r)
i

[
VTA1V

]
x

(r)
i , i = 1, . . . n, (5.6)

[
PTA2P

]
x

(s)
i = λ

(s)
i

[
PTA1P

]
x

(s)
i , i = 1, . . . ,m, (5.7)

where the eigenvalues are sorted in order of increasing magnitude. Section S1.1 contains the proof, which
relies on a generalization of the Cauchy interlacing theorem; the starting point is Theorem 4.3.10 of Ref. [18].

We now discuss the theorem’s implications. When A is independent of µ, we can choose h1 = h2 = 1

and A1 = A2. The interlacing property is then trivially satisfied for m = n with λ
(s)
i = λ

(r)
i = 1, and so the

equality in (5.4) always holds. When A1 6= A2 andm=n+1, the interlacing definition is restrictive, as it implies

λ
(s)
k ≤ λ

(r)
k ≤ λ

(s)
k+1. We would not generally expect the eigenvalues of the sampled and reduced matrices to

have this property. However, when m� n+ 1, each interval width is (much) larger and the condition is less

restrictive. For example, for n = 100 and m = 300, interlacing implies that λ
(s)
i ≤ λ

(r)
i ≤ λ

(s)
i+200. Thus, we

expect the conditions of the theorem to be satisfied for sufficiently large m, although this is not guaranteed.
Future work includes extending Theorem 5.1 to a broader class of matrix parameterizations.

5.2. Matrix gappy POD. An alternative approximation applicable to online problem (P1) is

Ã (µ) =

nA∑

i=1

ξiA (µ)VTAiV. (5.8)

Here, the N×N symmetric matrices Ai, i = 1, . . . , nA are computed offline and define a basis for the matrix
A (µ). Due to the symmetry of Ai, i = 1, . . . , nA, the approximation Ã (µ) will always be symmetric. The
parameter-dependent coefficients ξA ≡

(
ξ1
A, . . . , ξ

nA

A

)
can be computed online in an efficient manner that

ensures Ã (µ) is positive definite and thereby preserves requisite structure; the next sections describe this.
We refer to this method as ‘matrix gappy POD’, as it amounts to the gappy POD procedure [13] applied

to matrix data with modifications to preserve positive definiteness. The approach, which we originally
proposed in Ref. [8], is a more general formulation of the ‘matrix DEIM’ approach [28] (or ‘multi-component
EIM’ [26] in the context of the reduced-basis method), as it permits least-squares reconstruction (not simply
interpolation). Further, it is equipped with a mechanism to maintain positive definiteness.
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5.2.1. Offline computation: matrix basis. To obtain the matrix basis, we propose applying a
vectorized POD method, wherein the basis can be considered a set of ‘principal matrices’ that optimally
represent5 the matrix A over the training set {µi}. The (offline) steps for this method are as follows:

1. Collect matrix snapshots A
(
µi
)
, i = 1, . . . , p.

2. Vectorize snapshots ai ≡ vec
(
A
(
µi
))
∈ RN2

, i = 1, . . . , p; here, vec : RN×N → RN2

vectorizes a
matrix by stacking its columns.

3. Compute an nA-dimensional (with nA ≤ p) POD basis of the vectorized snapshots

Wa ≡
[
a1 · · · anA

]
∈ RN

2×nA (5.9)

using vectorized snapshots {ai}pi=1 and an ‘energy criterion’ ηA ∈ [0, 1] as inputs to Algorithm S1.
4. Transform these POD basis vectors into their matrix counterparts:

Ai = vec−1
(
ai
)
, i = 1, . . . , nA.

Each matrix Ai, i = 1, . . . , nA is guaranteed to be symmetric, as Algorithm S1 forms this basis by taking
linear combinations of symmetric matrices.

5.2.2. Online computation: coefficients. The approximation error can be bounded as follows:

‖VTA(µ)V −
nA∑

i=1

ξiA (µ)VTAiV‖F ≤ ‖V‖2F
∥∥A (µ)−

nA∑

i=1

ξiA (µ)Ai

∥∥
F

(5.10)

where ‖V‖2F = n if V is orthogonal. This leads to a natural choice for the scalar coefficients based on
minimizing the upper bound (5.10). In particular, we compute coefficients ξA (µ?) online as the solution to

minimize
(x1,...,xnA)

‖PTA (µ?)P−
nA∑

i=1

xiP
TAiP‖2F

subject to

nA∑

i=1

xiV
TAiV > 0.

(5.11)

Note that the coefficients are computed to match (as closely as possible) the full matrix and the linear
combination of pre-computed full matrices at a few entries. The constraints amount to a strict linear-matrix-
inequality, where A > 0 denotes a generalized inequality that indicates A is a positive-definite matrix. This
constraint ensures that structure is preserved. Note that the constraint can be modified (resp. dropped) in
cases where positive semidefiniteness (resp. symmetry) aims to be preserved.

Problem (5.11) is equivalent to a linear least-squares problem with nonlinear constraints; this can be
seen from a vectorized form of the objective function:

‖PTA (µ?)P−
nA∑

i=1

xiP
TAiP‖2F = ‖

(
PT ⊗PT

)
vec (A (µ?))−

(
PT ⊗PT

)
Wax‖22.

The objective function is equivalent to that of the gappy POD method [13]—which was discussed in Section
3.2.2—applied to matrix data. Note that this optimization problem is solved online using the online-sampled
data PTA (µ?)P; Section S2 describes a method for solving this optimization problem. In practice, we usually
observe the constraints to be inactive at the unconstrained solution. Therefore, typically the constraints need
not be handled directly, and solving problem (5.11) amounts to solving a small-scale linear least-squares
problem characterized by an (m2 + m)/2 × nA matrix. To ensure a unique solution to problem (5.11), the
matrix

(
PT ⊗PT

)
Wa must have full column rank. This can be achieved by enforcing (m2 + m)/2 ≥ nA

as well as mild conditions on the sampling matrix P. Procedure 3 describes the offline and online stages for
implementing the matrix gappy POD approximation.

5These matrices are optimal in the sense that they minimize the average projection error (as measured in the Frobenius
norm) of the matrix snapshots.
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Procedure 3: Matrix gappy POD

Offline stage

1 Compute the basis matrices Ai, i = 1, . . . , nA using the vectorized POD approach described in
Section 5.2.1.

2 Determine the sampling matrix P, which gives rise to a full-column-rank matrix
(
PT ⊗PT

)
Wa

with m chosen so that (m2 +m)/2 ≥ nA.

3 Compute low-dimensional matrices VTAiV, i = 1, . . . , nA.

4 Retain the sampled entries of the matrix basis PTAiP, i = 1, . . . , nA; discard other entries.

Online stage (given µ?)

1 Compute PTA(µ?)P.
2 Solve the small-scale optimization problem (5.11) for coefficients ξA (µ?).

3 Assemble the low-dimensional matrix Ã (µ?) by Eq. (5.8).

5.2.3. Exactness conditions. Theorem 5.2. The matrix gappy POD approximation is exact for any
specified online parameters µ? ∈ D if vec (A (µ?)) ∈ range (Wa) and

(
PT ⊗PT

)
Wa has full column rank.

See Section S1.2 for the proof. Condition 1 holds, e.g., when µ? ∈ {µi} and nA = p. Condition 2 can be
enforced by the choice of P and automatically holds in the case of full sampling, i.e., m = N .

6. Preserving potential-energy structure. This section presents a technique for approximating
Lagrangian ingredient III (see Section 4.2) within an algebraic setting. Unlike the matrix approximations of
the previous section, the nonlinear dependence on the potential energy on configuration variables q introduces
additional challenges that must be considered carefully.

We aim to devise an offline method—which may entail expensive operations—for constructing a scalar-
valued function Ṽr : Rn ×D → R. This function will be used online and should satisfy problem (P2):

(P2) Compute the gradient vector ∇qr Ṽr(q
?
r ;µ

?) at a cost independent of N . Given any online
parameters µ? ∈ D, this vector should be appropriately close to VT∇qV (q̄ (µ?) + Vq?r ;µ

?)
for all coordinates q?r ∈ Rn.

Note that this problem aims to approximate the gradient of the function as opposed to the function itself.
In specialized cases, the above approximation can be simplified considerably. For example, when q̄(µ) =

0, ∀µ ∈ D and the function V (q;µ) is purely quadratic in its first argument, then VT∇qV (q̄(µ) +Vqr;µ) =
VTA (µ)Vqr, where A (µ) is a symmetric Hessian matrix; in this case, one of the approximation techniques
described in Section 5 can be straightforwardly applied. Alternatively, if the potential energy is defined
by the integral over a domain (i.e., V (q;µ) =

∫
Ω

V(X,q;µ)dΩX
), a sparse cubature method ‘[2, 14] can be

used to achieve computational efficiency and structure preservation. In more general cases, however, another
approach is needed. In the following, we develop a method that makes no simplifying assumptions about
the dependence of the potential V on the configuration variables or parameters.

Due to the density of the matrix V, the most straightforward approach of setting Ṽr(qr;µ) = V (q̄(µ) +
Vqr;µ) leads to expensive online operations: computing the gradient ∇qr

Ṽr(q
?
r ;µ

?) = VT∇qV (q̄ (µ?) +
Vq?r ;µ

?) requires first computing all N entries of the gradient vector ∇qV (q̄ (µ?)+Vq?r ;µ
?). To rectify this,

we revisit the RBS technique proposed in Section 5.1 and introduce some modifications. In particular, we
replace V by a sparse parameter-dependent matrix UV (µ) ≡ PUV (µ) ∈ RN×n∗ with only m � N nonzero
rows, where UV (µ) ∈ Rm×n∗ is a dense matrix. That is, we approximate the potential energy as

Ṽr(qr;µ) ≡V (q̄(µ) + UV (µ)qr;µ). (6.1)

This approximation preserves structure, as Ṽr remains a parameterized scalar-valued function. Now, we wish
to compute UV such that ∇qr

Ṽr(q
?
r ;µ

?) = UV (µ?)
T∇qV (q̄ (µ?) + UV (µ?)q?r ;µ

?) is as close as possible
to VT∇qV (q̄ (µ?) + Vq?r ;µ

?) for any online point µ? ∈ D and any q?r ∈ Rn. One can imagine a variety of
methods for computing UV toward this stated goal. For example, one can formulate an optimization problem
to match the potential gradient at training points [8]; this effectively leads to a parameter-independent matrix
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UV . However, we found that this approach led to significant errors for many problems, especially as the
problem size and response nonlinearity increased. Instead, we pursue an idea motivated by the upcoming
analysis in Section 6.1, which considers the first two terms in a Taylor expansion of VT∇qV (q̄ (µ?)+Vq?r ;µ

?)
about the reference configuration.

In practice, we often find that the trajectories of dynamical systems are localized in the configuration
space. This is particularly true for mechanical oscillators encountered in structural dynamics, where the
trajectory does not deviate drastically from equilibrium. Using this observation, we focus our approximation
efforts on accurately capturing the behavior of the potential in a neighborhood of the online reference
configuration q̄ (µ?). Implicitly, this assumes that the online configurations do not greatly diverge from this

point. To this end, consider computing UV (µ?) online such that the approximation UV (µ?)
T∇qV (q̄ (µ?) +

UV (µ?)q?r ;µ
?) matches VT∇qV (q̄ (µ?) + Vq?r ;µ

?) to first order about the reference configuration:

UV (µ?)
T∇qV (q̄ (µ?) ;µ?) + UV (µ?)

T∇qqV (q̄ (µ?) ;µ?)UV (µ?)q?r

= VT∇qV (q̄ (µ?) ;µ?) + VT∇qqV (q̄ (µ?) ;µ?)Vq?r , ∀q?r ∈ Rn.
(6.2)

Notice that the high-order terms amount to approximating a reduced Hessian (defined via the dense matrix
V) by a second reduced Hessian (defined via the sparse matrix UV (µ?)). This is equivalent to online prob-
lem (P1) presented in Section 5 that was addressed by the RBS algorithm (as well as a matrix gappy POD
approach). This RBS algorithm is supported by Theorem 5.1, which shows that an exact approximation of
the reduced Hessian is possible under certain assumptions. While these assumptions do not always hold, the
theorem gives an expectation that a good approximation can be found under more general circumstances.
Unfortunately, the presence of the low-order terms in Eq. (6.2) alters the character of the reduced approxi-
mation and so Theorem 5.1 no longer applies. In this case, the matrix UV (µ?) must serve to capture both
gradient and Hessian information simultaneously, which introduces restrictive assumptions in order to obtain
an equivalent result to Theorem 5.1; this will be shown later in Lemma 1.

To avoid the limitations associated with these restrictions, we set the reference configuration to equilib-
rium, i.e., q̄(µ) = q0 (µ) with equilibrium defined as ∇qV (q0 (µ) ;µ) = 0. This forces the low-order Taylor
terms to zero and simplifies Eq. (6.2) to

UV (µ?)
T∇qqV (q0 (µ?) ;µ?)UV (µ?) = VT∇qqV (q0 (µ?) ;µ?)V. (6.3)

Now, Theorem 5.1 holds, implying that Equation (6.3) can be exactly solved when m = n. For this reason,
we compute UV (µ?) online to satisfy (6.3) using n sample indices. Specifically, we compute it according to

UV (µ?) =

[
X

0(m−n)×n

]
, (6.4)

where X is given by solving LT1 X = LT2 . Here, L2 ∈ Rn×n denotes the lower-triangular Cholesky
factor of VT∇qqV (q0 (µ?) ;µ?)V, L1 ∈ Rn×n denotes the lower-triangular Cholesky factor of

P1
T∇qqV (q0 (µ?) ;µ?)P1, and P1 represents the first n columns of P. We defer discussing the compu-

tational cost for this approach to Section 6.2, and now return to the previously alluded difficulties associated
with solving (6.2) when the reference configuration does not correspond to equilibrium.

Remark 3. For problems where the potential V does not have a stationary point, there is no equilibrium
configuration. As such, a different approach to compute UV (µ?) is required; however such an approach will
not guarantee first-order consistency (6.2). For example, if m > p, then UV (µ?) could be computed online
as the solution to the optimization problem

minimize
X∈Rm×n

∗

m∑

i=1

n∑

j=1

|xij |

subject to




∇qV (q̄ (µ?) ;µ?)T

∇qV (q̄(µ1);µ1)T

...
∇qV (q̄(µp);µp)T


PX =




∇qV (q̄ (µ?) ;µ?)T

∇qV (q̄(µ1);µ1)T

...
∇qV (q̄(µp);µp)T


V,

(6.5)

where xij denotes the (i, j) entry of matrix X.
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6.1. Solvability of the two-term Taylor equation. The method presented in the previous section
was motivated by difficulties in inexpensively approximating the reduced gradient of a nonlinear function. In
this section, we provide insight into these difficulties by investigating a much simpler situation: the solvability
of the two-term Taylor Eq. (6.2), which we write in matrix/vector form as

UV
TPT c + UV

TPTAPUV q?r = VT c + VTAVq?r , ∀q?r ∈ Rn. (6.6)

Here, we have set c = ∇qV (q̄ (µ?) ;µ?) and A = ∇qqV (q̄ (µ?) ;µ?). We have also dropped dependence
on µ? such that c and A are parameter independent; this is equivalent to restricting Eq. (6.2) to a single
instance of µ?. This is not ideal, as we would typically wish to minimize online costs by computing a single
UV offline that is valid for all subsequent online calculations. However, we now show that it is not always
possible to satisfy Eq. (6.2), even when one is restricted to finding a UV for a single instance of µ?.

As Eq. (6.6) must hold for all q?r , we have the following necessary and sufficient conditions:

UV
TPTAPUV = VTAV and UV

TPT c = VT c. (6.7)

It is possible to show that satisfying these conditions is equivalent to finding a ŨV ∈ Rm×n such that

ŨV

T
ŨV = I and ŨV

T
PT c̃ = ṼT c̃, (6.8)

where ṼT Ṽ = I. The definitions of ŨV , Ṽ, and c̃ are given below. The key point is that the necessary and

sufficient conditions for Eq. (6.8) amount to finding an orthogonal matrix ŨV such that ŨV

T
PT c̃ = ṼT c̃

for a given orthogonal matrix Ṽ and a given vector, c̃. In the simple case when A = I and V is orthogonal,

we have ŨV = UV and Ṽ = V. More generally, we have the following definitions:

ŨV = PTLTPUV L−Tφ , Ṽ = LTVL−Tφ , c̃ = L−1c,

where L is the lower-triangular Cholesky factor of A, and Lφ is the lower-triangular Cholesky factor of
VTAV. The above equivalence relies on the identities PTLPPTLTP = PTAP and PTLPPTL−1 = PT .
These hold due to the lower-triangular form of the matrix L.

The following lemma addresses the conditions under which Eq. (6.8) (equivalently Eq. (6.6)) holds.
Lemma 1. Consider the equations

ŨV

T
ŨV = I and ŨV

T
PT c̃ = ṼT c̃ (6.9)

with the following matrices given: P ∈ {0, 1}N×m consists of selected columns of the identity matrix (see

prior definition), Ṽ ∈ RN×n with ṼT Ṽ = I, and c̃ ∈ RN×1. Then, assuming that m ≥ n, some ŨV ∈ Rm×n
exists such that Eq. (6.9) is satisfied if and only if

||ṼT c̃||2 = ||PT c̃||2 and m = n or ||ṼT c̃||2 ≤ ||PT c̃||2 and m > n. (6.10)

See Section S1.3 for the proof.
Eq. (6.10) is satisfied if either c̃ = 0 (i.e., the equilibrium configuration is taken as the reference con-

figuration) or if m = N . Unfortunately, however, Eq. (6.10) is not guaranteed to be satisfiable in more

general situations. Specifically, when m > n, the condition ||ṼT c̃||2 ≤ ||PT c̃||2 corresponds to comparing
the magnitude of a vector of length n obtained by rotating and dropping components with a second vec-
tor of length m obtained by simply dropping components. If Ṽ and c̃ are not correlated, then one could
perhaps hope that on average the vector with more components would generally have a larger magnitude.
However, when c̃ lies completely within the subspace spanned by the columns of Ṽ and all components of
c̃ are non-zero, then ||ṼT c̃||2 = ||c̃||2 and so satisfying the necessary and sufficient conditions requires ‘full
sampling’ m = N . While this scenario may be considered pessimistic, one can expect that a very large value
of m will be required when c̃ lies primarily in the range space of Ṽ. In general, there is no guarantee that
even the simplified (i.e., parameter-independent) form of the two-term Taylor equation is solvable. When
one also considers that Eq. (6.6) corresponds to the restriction of Eq. (6.2) to a single instance of µ?, the
above result should be seen as quite discouraging.
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Therefore, this analysis supports the approach proposed earlier in the section, i.e., setting the refer-
ence configuration to equilibrium—which results in c̃ = 0—and computing a parameter-dependent matrix
UV (µ?) via Eq. (6.4), which is valid only for a single online point µ? but can be used for all reduced config-
uration variables q?r ∈ Rn that may arise during the online evaluation. This approach avoids the difficulties
introduced by a nonzero c̃ and guarantees solvability of the two-term Taylor expression with m = n.

6.2. Implementation and cost. Procedure 4 summarizes the offline/online strategy for implementing
the RBS strategy for approximating the potential energy. This method satisfies the online computational

Procedure 4: Reduced-basis sparsification for potential energy

Offline stage

1 Determine the sampling matrix P.

Online stage (given µ?)

1 Compute VT∇qqV (q0 (µ?) ;µ?) V.

2 Compute P1
T∇qqV (q0 (µ?) ;µ?) P1.

3 Solve Equation (6.4) for UV (µ?).

4 For any q?r ∈ Rn, set Ṽr(q
?
r ;µ

?) = V (q0 (µ?) + PUV (µ?) q?r ;µ
?), and compute the gradient as

∇qr
Ṽr (q?r ;µ

?) = UV (µ?)
T

PT∇qV (q0 (µ?) + PUV (µ?) q?r ;µ
?)

cost requirements of problem (P2) with one exception: online step 1 incurs an N -dependent operation count.
However, online steps 1–3 depend only on the online point µ? and not on the reduced configuration variables
q?r . Thus, these steps are performed only once per parameter instance, and their cost can be amortized over
all online-queried values of q?r . As a result, this does not preclude computational savings, as will be shown
in the numerical results reported in Section 7. Note that online step 2 is equivalent to computing just O(n2)
entries of ∇qqV , which can be completed at a cost independent of N . Step 3 requires O(n3) operations.

Remark 4. Most nonlinear reduced-order modeling methods [3, 25, 9, 15, 11, 6, 7] assume ‘H-
independence’ [11], which states that the Jacobian of the vector-valued nonlinear function is sparse; in
the present context, this corresponds to sparsity of the matrix ∇qqV . When this assumption holds, the
proposed methodology incurs low online computational cost. This efficiency results from the fact that com-
puting PT∇qV (q0 (µ?) + PUV (µ?) q?r ;µ

?) in Step 4 of Procedure 4 requires that only m components of
the gradient ∇qV be evaluated; if H-independence holds, then these m components depend on only O(m)
components of the argument q0 (µ?) + PXqr, leading to an N -independent operation count.

Unfortunately, H-independence does not hold for some problems in Lagrangian dynamics. For example
molecular-dynamics models can be characterized by a potential that includes interaction terms between
all particles, resulting in a dense matrix ∇qqV . Here, the proposed method can still achieve efficiency by
‘centering’ the configuration space at equilibrium such that q0 (µ) = 0, ∀µ ∈ D. In this case, the method
requires computing only m components of the argument q0 (µ?) + PXqr in Step 4 of Procedure 4 regardless
of the sparsity of the matrix ∇qqV . This efficiency is achievable due to the fact that the method injects
‘sparsification’ in the argument of the nonlinear function. This ability to achieve an N -independent operation
count when H-independence is violated distinguishes this method from others in the literature.

7. Numerical experiments. Although the Galerkin and proposed reduced-order models have a the-
oretical advantage over the gappy POD and collocation reduced-order models in terms of preserving La-
grangian structure, it is unclear a priori if this translates to improved numerical results in practice. This
section investigates this question by applying the model-reduction techniques to a practical problem: the
clamped–free truss structure shown in Figure 7.1.

We set the material properties to those of aluminum, i.e., density ρ = 2700 kg/m
3

and elastic modulus
E = 62× 109 Pa. The external force is composed of four components:

f(µ, t) =
4∑

i=1

ri(µ, t)ri,
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Fig. 7.1. Clamped–free parameterized truss structure

where ri ∈ RN , i = 1, . . . , 4 correspond to unit loads uniformly distributed across designated nodes and
ri : D × [0,T] → R, i = 1, . . . , 4 denote the component-force magnitudes. Figure 7.1 depicts the spatial
distribution of the forces, which lead to vectors ri, i = 1, . . . , 4 through the finite-element formulation
described below. The parameterized, time-dependent magnitudes of these forces are

ri(µ, t) =

{
γi (µ) sin (λi(µ) (t− T/4)) , t ≥ T/4

0, otherwise
,

where γi : D → R and λi : D → R, i = 1, . . . , 4 denote the maximum force magnitudes and force frequencies,
respectively. Similarly, the initial condition is composed of four components q(0;µ) =

∑4
i=1 si(µ)si, where

si is the steady-state displacement of the truss subjected to load riγi (µ̄) with µ̄ = (0, . . . , 0) denoting the
nominal point in parameter space. The equilibrium configuration is simply the undeformed truss represented
by q0 (µ) = 0; thus, the configuration space is centered at equilibrium.

The truss is parameterized by 16 parameters µ ≡ (µ1, . . . , µ16) ∈ [−1, 1]
16

that affect the geometry,
initial condition, and applied force as described in Table 7.1.

length (m)
bar

width (m) height (m)
initial condition external-force external-force

cross-sectional max magnitude (N) magnitude frequency
area (m2) si γi λi

200 + 50µ1 0.0025(1 + 0.5µ2) 10(1 + µ3) 10(1 + µ4) f
i
(1 + 0.5µi+4) f

i
(1 + 0.5µi+8) 3ω0(1 + 0.5µi+12)

Table 7.1
Effect of parameters on truss geometry, initial conditions, and applied forces. Here, f

i
, i = 1, . . . , 4 denote the nominal

force magnitudes (specified within each experiment) and ω0 denotes the lowest-magnitude eigenvalue at the nominal point µ̄.

The problem is discretized by the finite-element method. The model consists of 16 three-dimensional bar
elements per bay with three degrees of freedom per node; this results in 12 degrees of freedom per bay. We
consider a problem with 250 bays, and therefore N = 3×103 degrees of freedom in the full-order model. The
bar elements model geometric nonlinearity, which causes a high-order nonlinearity in the potential energy
V . This discretization leads to a Lagrangian-dynamical-system model with configuration manifold Q = RN ,
Riemannian metric g(v,w;µ) = vTM (µ)w, nonlinear potential-energy function V , and dissipation function
F (q̇;µ) ≡ 1

2 q̇TC (µ)q̇. Here, C (µ) = αM (µ) + β∇qqV (0;µ) corresponds to Rayleigh damping. Here, α
and β are chosen such that the damping ratio is a specified value ζ for the uncoupled ODEs associated with
the smallest two eigenvalues of the matrix pencil (M(µ̄),∇qqV (0; µ̄)) [10].

To numerically solve the Lagrangian equations of motion in the time interval [0,T] with T = 25 seconds,
we employ the implicit midpoint rule (a symplectic integrator). This ensures that the numerical solution will
yield symplectic time-evolution maps in the conservative case. We employ a globalized Newton solver with a
More–Thuente linesearch [12] to solve the system of nonlinear algebraic equations arising at each time step.
Convergence of the Newton iterations is declared when the residual norm reaches 10−6 of its value computed
using a zero acceleration and the values of the displacement and velocity at the beginning of the timestep.
The linear system arising at each Newton iteration is solved directly.
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The experiments compare the performance of four reduced-order models: Galerkin projection (Section
3.1), collocation (Section 3.2.1), and gappy POD (Section 3.2.2), and the proposed structure-preserving
methods. All reduced-order models (ROMs) employ the same POD reduced basis V, which is computed by
applying Algorithm S1 with snapshots of the configuration variables and an energy criterion η ← ηq ∈ [0, 1]
specified within each experiment. The POD bases Wθ employed by the gappy POD approach (see Section
3.2.2) are generated in the same way. In all cases, snapshots are only collected for the first half of the
time interval at the training points; as a result, the second half of the time interval can be considered
predictive—even for the training set.

Reduced-order models with complexity reduction employ the same sampling matrix P, which is generated
using GNAT’s greedy sample-mesh algorithm [7, Algorithm 3].6 These models are also implemented using
the sample-mesh concept [7, Section 5]. To solve optimization problems (5.2), we use the Poblano toolbox
for unconstrained optimization [12]. The initial guess for each of these problems is chosen as PTPV. In
practice, we always found the constraints to be inactive at the unconstrained solution to (5.11); therefore,
this reduces to a linear least-squares problem that we solve directly.

To compare the performance of the reduced-order models, we will consider the response quantity of
interest to be the y-displacement of the bottom-left node of the end face of the truss in Figure 7.1; we denote
this (parameterized, time-dependent) quantity by y ∈ R. The reported errors will be a normalized 1-norm
(in time) of the error in this quantity:

error =

∑
t∈Tsample(µ?)

|yROM(t;µ?)− yHFM(t;µ?)|

|Tsample(µ?)|( max
t∈Tsample(µ?)

yHFM(t;µ?)− min
t∈Tsample(µ?)

yHFM(t;µ?))
. (7.1)

Here, yROM denotes the response computed by a reduced-order model, yHFM is the high-fidelity ‘truth’
response, and Tsample(µ?) ⊂ [0,T] denotes the time instances selected by the time integrator for online point
µ?.7 In addition to the error in Eq. 7.1, we will compare the speedup achieved by the reduced-order models,
measured as the ratio of the reduced-order-model simulation time to the full-order-model simulation time.
All computations are carried out in Matlab on a Mac Pro with 2 × 2.93 GHz 6-Core Intel Xeon processors
and 64 GB of memory. Section S4 contains supplementary plots for these experiments.

7.1. Conservative case. We first consider the conservative case characterized by zero damping ζ = 0
and no external forces µi = −2 for i = 9, . . . , 16. As a result, we are free to vary parameters µi, i = 1, . . . , 8
that affect only the geometry and initial condition. We set the nominal forces that affect the initial condition
to f

1
= f

2
= 2kg×9.81m/s

2
and f

3
= f

4
= 0.4kg×9.81m/s

2
. This scenario is particularly interesting, as the

full-order model corresponds to a conservative Lagrangian-dynamical system with energy conservation and
symplectic time-evolution maps. Because we numerically solve the equations of motion using the (symplectic)
implicit midpoint rule, the numerical solution is also characterized by a symplectic time-evolution map. This
will also hold for reduced-order models that preserve Lagrangian structure, i.e., the Galerkin reduced-order
model and the two proposed techniques. Note also that the dynamics of undamped, unforced structures are
typically quite stiff, which often leaves reduced-order models prone to instabilities.

We first perform a timestep-verification study for the nominal point µ̄ characterized by µ̄i = 0, i = 1, . . . 8
to ensure we employ an appropriate timestep. A timestep size of ∆t = 0.008 seconds yields an observed
convergence rate in the time-averaged tip displacement of 1.98, which is close to the asymptotic rate of
convergence of the implicit midpoint rule, and an approximated error in the time-averaged tip displacement
using Richardson extrapolation of 5.16× 10−7. We can therefore declare this to be an appropriate timestep
size for the numerical experiments. Further, we note that the average number of Newton iterations per
timestep is 3.15, so the geometric nonlinearity is significant.

6Greedy-algorithm parameters are ΦR = ΦJ = Wr a POD basis computed using Algorithm S1 with snapshots of the
numerical residual over all timesteps and Newton iterations during the full-order-model training simulations and an energy
criterion of η ← ηr = 1 − 10−2, a target number of sample nodes ns = m/ν with ν = 3 unknowns per node (the x-, y-, and
z-displacements), an empty seeded sample-node set N = ∅, and nc equal to the number of columns in Wr.

7We employ this error measure because it is insensitive to shifts in the average value of the displacement, unlike other
measures such as the average 1-norm.
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7.1.1. Fixed parameters. We now test the model-reduction techniques in a fixed-parameters scenario.
That is, we employ the nominal point in the parameter space for both the training and online points: {µi} = µ̄
and µ? = µ̄. Recall that we only collect snapshots for the first half of the time interval, so the second half
can be considered a predictive regime. Note that the two proposed structure-preserving methods are the
same for this case: they both exactly approximate the reduced mass matrix when the parameters are fixed.

The POD reduced basis V is generated using an energy criterion of ηq = 1− 10−5 in Algorithm S1; this
leads to a basis dimension of only n = 11 � N . The gappy POD-based reduced-order model employs an
energy criterion of 1 (i.e., no truncation) for its reduced bases Wθ (see Section 3.2.2). Figure 7.2 reports
results for the reduced-order models as the number of sample indices varies.8

First, note that the Galerkin reduced-order model is accurate (relative error of 5.42%); however, it
yields a speedup of only 1.69. This is to be expected, as it preserves Lagrangian structure, but has no
complexity-reduction mechanism (see Section 3.1.1). In addition, the proposed reduced-order model—which
also preserves structure, yet has a complexity-reduction mechanism—yields a stable and accurate response
regardless of the number of sample points chosen. For example, 0.4% sampling yields a relative error of 7.3%
and a speedup of 207.0. Sampling 2% of the indices yields an error of 0.71% and a speedup of 34.5, and
sampling 5% of the indices leads to 0.48% error and a speedup of 15.7. Note that sampling beyond 5% does
not improve the method’s accuracy; however, it degrades the speedup, as it requires computing more entries
of the vector-valued functions.

The other complexity-reducing reduced-order models (gappy POD and collocation) are always unstable
except for collocation in the full-sampling case, when it is equivalent to Galerkin. This clearly highlights the
practical benefits of preserving structure in model reduction, as existing structure-destroying complexity-
reduction methods failed, even in the relatively simple scenario of fixed parameter values.9

7.1.2. Varying parameters. We now consider a fully predictive scenario with µ? 6∈ {µi}. We use
p = 6 training points and determine {µi} using Latin hypercube sampling [22]. Three online points are
chosen randomly. Figure 7.3 depicts the tip displacement for the training points. Note that the responses
are significantly different from one another. The two proposed structure-preserving reduced-order models
will now be different from one another, as the parameters are varying, which means that the parameterized
mass matrix will be approximated differently by the two techniques (see Table 4.1).

The reduced-order models employ a POD reduced basis with a truncation energy criterion of ηq =
1 − 10−6, which yields a basis dimension of n = 147 � N . Again, the gappy POD-based reduced-order
model employs a truncation criterion of ηθ = 1 for its reduced bases. Figure 7.4 reports the reduced-order-
model performances for first randomly chosen online point; Figures S4.1 and S4.2 report results for the other
two points.

Again, note that the Galerkin reduced-order model is stable and accurate, as it generates relative errors
of 1.87%, 14.5%, and 9.16% at the three online points, respectively. However, it yields discouraging speedups
of 0.81 (i.e., the simulation was slower than for the full-order model), 1.61, and 1.32 at these points. The
proposed structure-preserving methods are always stable and quite accurate. They yield nearly the same
performance, although method two (which employs the matrix gappy POD approximation) generates lower
errors for online points with 4.9% sampling. From Figure 7.4, note that the high-frequency oscillations that
characterize the proposed methods’ responses are smoothed out when the sampling percentage reaches 20%.
In particular, proposed method 2 generates speedups of 15.9, 28.5, and 26.2 and relative errors of 11.6%,
13.0%, and 11.6% for 4.9% sampling. For 20% sampling, the method generates speedups of 4.84, 9.82, and
7.72, and relative errors of 1.51%, 5.83%, and 1.09%.

In this example, the gappy POD reduced-order model is unstable for all sampling percentages, and
the collocation reduced-order model is only stable for 100% sampling (at which point it is mathematically
equivalent to the Galerkin reduced-order model). This is not surprising, as these methods do not preserve
problem structure, nor do they guarantee energy conservation. This poor performance can be attributed to
the stiff dynamics that characterize the considered conservative Lagrangian dynamical system, which lead
to instabilities for both reduced-order models.

8In all response plots, a ‘flat line’ indicates that the nonlinear solver failed to converge after 500 Newton iterations at three
different time steps.

9We will show in Section 7.2.1 that introducing dissipation improves the performance of both collocation and gappy POD.
Note that gappy POD was also unstable for other attempted energy criteria of ηθ = 1− 10−9 and ηθ = 1− 10−8.
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Fig. 7.2. Conservative, fixed-parameters case. Reduced-order model performance as a function of sampling percentage
m/N×100%. Legend for bottom plots: full-order model (black), Galerkin ROM (dark blue), structure-preserving ROM method
1 (magenta), structure-preserving ROM method 2 (light blue), gappy POD ROM (red), collocation ROM (green), end of
training time interval (circle).
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Fig. 7.3. Conservative, parameter-varying case: tip displacement for the training set {µi}.

This example showcases the practical importance of preserving Lagrangian structure: the proposed
structure-preserving reduced-order models are the only models that yield both fast and accurate results.

7.2. Non-conservative case. We now consider the non-conservative case in which the non-
conservative dissipative and external forces are nonzero. That is, we set ζ = sin(5◦) and all parameters

µi, i = 1, . . . , 16 are free to vary. We again set the nominal forces to f̄1 = f̄2 = 2kg × 9.81m/s
2

and
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Fig. 7.4. Conservative, parameter-varying case: reduced-order model performance as a function of sampling percentage
m/N × 100% for online point 1.

f̄3 = f̄4 = 0.4kg × 9.81m/s
2
. As before, we perform a timestep-verification study for the nominal point

µ̄ characterized by µ̄i = 0, i = 1, . . . 16 to discover an appropriate timestep. A timestep size of ∆t = 0.1
seconds leads to an approximated error using Richardson extrapolation of 1.07 × 10−4. We can therefore
declare this to be an appropriate timestep size for the numerical experiments. Further, we note that the
average number of Newton iterations per timestep is 2.56, so the nonlinearity remains significant.

7.2.1. Fixed parameters. We again test the different methods for the fixed-parameters case where
{µi} = µ̄ and µ? = µ̄. As above, we only collect snapshots for the first half of the time interval, and the
proposed structure-preserving methods yield the same results. The POD reduced basis V is generated using
an energy criterion of ηq = 1−10−5, which leads to a basis dimension of n = 6� N . The gappy POD-based
reduced-order model employs an energy criterion of 1 for its reduced bases Wθ. Figure 7.5 reports results
for the reduced-order models as the number of sample indices varies.

Again, the Galerkin reduced-order model is accurate, with a relative error of 1.57%, but produces a
speedup of only 1.33. The proposed structure-preserving method is always stable as expected. Its per-
formance is dependent upon the sampling percentage, with (arguably) the best performance achieved for
2% sampling (6.28% error and 36.5 speedup). For 0.2% sampling, the method produces 16.1% error and a
speedup of 251; 20% sampling leads to 5.39% error and a speedup of 4.6.

The gappy POD reduced-order model is unstable for 0.2%, 2%, and 5% sampling, but stabilizes at 20%;
compared to the conservative case, this stability likely results from less stiff dynamics due to the presence
of damping. This yields its best performance of 1.53% error, but only a 4.1 speedup.10 The collocation

10A truncation criterion of 1 yielded the best performance for Gappy POD. For ηθ = 1−10−9, Gappy POD was unstable for
all sampling percentages. It was also unstable for all sampling percentages when it employed an energy criterion of ηθ = 1−10−8.
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reduced-order model is stable only for full sampling, when it is equivalent to Galerkin.
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Fig. 7.5. Non-conservative, fixed-parameters case. Reduced-order model performances. Legend for bottom plots: full-
order model (black), Galerkin ROM (dark blue), structure-preserving ROM method 1 (magenta), structure-preserving ROM
method 2 (light blue), gappy POD ROM (red), collocation ROM (green), end of training time interval (circle).

7.2.2. Varying parameters. We now consider the parameter-varying case where µ? 6∈ {µi}. We again
employ p = 6 training points and determine {µi} using Latin hypercube sampling. We choose three online
points randomly in the parameter space. Figure 7.6(a) shows the tip displacement for the training points;
clearly, the responses are significantly different from one another. Because we are in a fully predictive scenario,
the two proposed structure-preserving reduced-order models again yield different results. All reduced-order
models employ an energy criterion of ηq = 1− 10−5, which leads to a basis dimension of n = 12. We employ
ηθ = 1 for the gappy POD reduced-order model.

Figure 7.7 reports the results for this predictive study online point 1; Figures S4.3 and S4.4 provide
results for points 2 and 3. At all three points, Galerkin is accurate (relative errors of 7.5%, 9.8%, and
13.5%), but does not yield significant speedups (speedups of 1.4, 1.2, and 1.1). As is apparent from the
plots, the two proposed structure-preserving methods yield nearly the same performance. At 0.4% sampling,
method 1 produces relative errors of 2.82%, 11.0%, and 10.3% and speedups of 96.3, 73.3, and 82.3. At 2%
sampling, method 1 yields relative errors of 4.38%, 10.9%, and 7.97% and speedups of 21.6, 19.2, and 16.8.

In this example, gappy POD does not stabilize until 40% sampling, at which point the speedup is less
than 1. Thus, gappy POD does not yield performance improvement for this problem. Collocation stabilizes
at 80% sampling, and also fails to generate any performance improvement.

7.3. Effect of nonlinearity. We now aim to characterize the dependence of problem nonlinearity on
the proposed methods’ performances. Recall from Section 6 that the potential-energy approximation is
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Fig. 7.6. Non-conservative, parameter-varying case: tip displacement for the training set {µi} for two sets of experiments.

computed by matching the gradient of the potential energy to first order about the equilibrium configura-
tion q0 (µ?). In the presence of stronger nonlinearity, we expect the configuration to deviate further from
equilibrium, which should degrade the accuracy of the approximation.

To numerically assess the effect of nonlinearity, we repeat the experiments from Section 7.2.2 using
the same training and online points, but we increase the nominal forces by a factor of 2.5 to f

1
= f

2
=

5kg × 9.81m/s
2

and f
3

= f
4

= 1kg × 9.81m/s
2
. We first perform a timestep-verification study for the

nominal point µ̄. As expected, a smaller timestep size of ∆t = 0.025 seconds is required, as it corresponds
to an approximated error using Richardson extrapolation of 3.62× 10−4.

Figure 7.6(b) displays the tip displacement for the training points. Note that the responses are similar to
those for the previous study (see Figure 7.6(a)), but have larger magnitudes that imply a stronger geometric
nonlinearity. The reduced-order models employ a POD reduced basis of dimension n = 14, which was
obtained by an energy criterion of ηq = 1− 10−5; gappy POD uses ηθ = 1 for its nonlinear-function bases.

Figure 7.8 reports the reduced-order models’ performances for online point 1; Figures S4.5 and S4.6
provide results for online points 2 and 3. As in the previous case, Galerkin is accurate (relative errors of
3.0%, 8.3%, and 10.0% at the online points), but does not generate significant speedups (1.71, 1.67, and
1.0). The proposed structure-preserving techniques again yield very similar results to each other; however,
the errors are significantly larger than in the experiments from Section 7.2.2 characterized by a less severe
nonlinearity. For 0.5% sampling, proposed method 1 yields relative errors of 11.1%, 21.3%, and 15.9% at the
online points and speedups of 160, 116.4, and 98.9. Thus, increasing the nonlinearity in the problem does
have a deleterious effect on the methods’ performances.

However, it is important to note that other complexity-reducing reduced-order models fail to generate
significant performance improvement on this more highly nonlinear problem. In particular collocation is
always unstable for a sampling percentage less than 60%, and gappy POD is always unstable when the
percentage is less than 80%. As a result, the best speedup obtained by either of the methods is only 2.77
(collocation for 60% sampling for online point 2).

7.4. Sampling percentage performance. Table 7.2 reports the sampling percentage yielding the
best performance of the proposed method for the numerical experiments in the previous sections. The
sampling percentage leading to the best performance is problem dependent. However, a sampling percentage
less than 2% yielded the best results in most cases. This can be attributed to the observed independence
of accuracy on sampling percentage once sampling exceeds roughly 2% in most cases, contrasted with the
strong dependence of speedup on sampling percentage. The single exception—the conservative, varying-
parameters case—is a highly stiff problem wherein parameter dependence excites a richly varying set of
dynamics. This is evidenced by the fact that the problem was characterized by the largest basis dimension
across all experiments (n = 147).
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Fig. 7.7. Non-conservative, parameter-varying case. Reduced-order model performances for online point 1. Legend for
bottom plots: full-order model (black), Galerkin ROM (dark blue), structure-preserving ROM method 1 (magenta), structure-
preserving ROM method 2 (light blue), gappy POD ROM (red), collocation ROM (green), end of training time interval (circle).

Section description
best sampling

error speedup
percentage(s)

7.1.1 conservative, fixed params
0.4%? 7.3% 207

2% 0.71% 34.5
7.1.2 conservative, varying params 20% 5.83% 9.82
7.2.1 non-conservative, fixed params 2% 6.28% 36.5
7.2.2 non-conservative, varying params 0.4%? 2.82% 96.3
7.3 non-conservative, highly nonlinear, varying params 0.5%? 11.1% 160

Table 7.2
Best sampling percentages for experiments in Sections 7.1–7.3. An asterisk indicates the minimal sampling percentage,

i.e., m = n. Results correspond to online point 1.

8. Conclusions. This paper has presented an efficient structure-preserving model-reduction strategy
applicable to simple mechanical systems. The methodology directly approximates the quantities that define
the problem’s Lagrangian structure and subsequently derives the equations of motion, while ensuring low
online computational cost. The method is distinct from typical model-reduction methods for nonlinear ODEs;
these methods are typically based on collocation and DEIM/gappy POD techniques that approximate the
equations of motion and destroy Lagrangian structure. At the core of the methodology are the reduced-
basis sparsification (RBS) and matrix gappy POD techniques for approximating parameterized reduced
matrices while preserving symmetry and positive definiteness; we also employed the former method to
preserve potential-energy structure.
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Fig. 7.8. Non-conservative, highly nonlinear parameter-varying case. Reduced-order model performances for online
point 1. Legend for bottom plots: full-order model (black), Galerkin ROM (dark blue), structure-preserving ROM method
1 (magenta), structure-preserving ROM method 2 (light blue), gappy POD ROM (red), collocation ROM (green), end of
training time interval (circle).

Numerical experiments on a geometrically nonlinear parameterized truss structure highlight the method’s
benefits: preserving Lagrangian structure ensured the method generated stable responses that were often
very accurate. Other model-reduction techniques were often unstable; achieving stability required too many
sample indices to lead to significant performance gains for those methods. The experiments also showed that
both RBS and matrix gappy POD led to nearly the same performance across a range of experiments.

Future work includes devising a method to improve the method’s robustness in the presence of strong
nonlinearity (e.g., by non-local approximation of the potential-energy function), applying the method to a
truly large-scale problem, devising a technique-specific method for choosing the sample indices, and deriving
error bounds and error estimates that rigorously assess the accuracy of the method’s predictions. Finally,
the RBS and matrix gappy POD methods are relevant to a wider class of problems than model reduction
for Lagrangian systems; future work will investigate to their applicability to other scenarios.
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Sciences, 339 (2004), pp. 667–672.

[5] Christopher Beattie and Serkan Gugercin, Structure-preserving model reduction for nonlinear port-Hamiltonian
systems, in Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on,
IEEE, 2011, pp. 6564–6569.

[6] K. Carlberg, C. Bou-Mosleh, and C. Farhat, Efficient non-linear model reduction via a least-squares Petrov–Galerkin
projection and compressive tensor approximations, International Journal for Numerical Methods in Engineering, 86
(2011), pp. 155–181.

[7] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The GNAT method for nonlinear model reduction: effective
implementation and application to computational fluid dynamics and turbulent flows, Journal of Computational
Physics, 242 (2013), pp. 623–647.

[8] K. Carlberg, R. Tuminaro, and P. Boggs, Efficient structure-preserving model reduction for nonlinear mechanical
systems with application to structural dynamics, in AIAA Paper 2012-1969, 53rd AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, April 23–26 2012.

[9] S. Chaturantabut and D. C. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM Journal
on Scientific Computing, 32 (2010), pp. 2737–2764.

[10] I. Chowdhury and S.P. Dasgupta, Computation of Rayleigh damping coefficients for large systems, The Electronic
Journal of Geotechnical Engineering, 8 (2003).

[11] M. Drohmann, B. Haasdonk, and M. Ohlberger, Reduced basis approximation for nonlinear parametrized evolution
equations based on empirical operator interpolation, SIAM Journal on Scientific Computing, 34 (2012), pp. A937–
A969.

[12] D.M. Dunlavy, T.G. Kolda, and E. Acar, Poblano v1. 0: A Matlab toolbox for gradient-based optimization, Sandia
National Laboratories, Albuquerque, NM and Livermore, CA, Tech. Rep. SAND, 1422 (2010).
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SUPPLEMENTARY MATERIAL:
PRESERVING LAGRANGIAN STRUCTURE IN

NONLINEAR MODEL REDUCTION WITH
APPLICATION TO STRUCTURAL DYNAMICS

KEVIN CARLBERG∗, RAY TUMINARO† , AND PAUL BOGGS‡

S1. Proofs.

S1.1. Proof of Theorem 5.1. The proof relies on a generalization of the Cauchy interlacing theorem.
We begin by restating Theorem 4.3.10 from Ref. [2].

Theorem S1.1. Let two sequences of interlacing real numbers be given by (λ
(r)
i )ni=1 and (λ

(s)
i )mi=1 as

described by inequality (5.5) when m = n+ 1. Define Λ(r) = diag(λ
(r)
i ) and Λ(s) = diag(λ

(s)
i ). Then, there

exists a real number α ∈ R and a vector y ∈ Rn such that Λ(s) are the eigenvalues of the real symmetric
matrix

B̂(bordered) ≡
(

Λ(r) y
yT α

)
.

The following corollary is a direct consequence of the above theorem.
Corollary S1.2. Given B̂(s) ∈ SPD (m) and B̂(r) ∈ SPD (m− 1), where SPD (k) denotes the set of

k × k symmetric positive-definite matrices, whose eigenvalues interlace, then

∃ Um such that UT
mB̂(s)Um = B̂(r) with UT

mUm = I. (S1.1)

Proof. Using the above theorem, a matrix B̂(bordered) ∈ SPD (m) exists that shares the same eigenvalues

with B̂(s). Let Q(bordered), Q(s), and Q(r) be the (square, orthogonal) matrices of eigenvectors for B̂(bordered),

B̂(s), and B̂(r), respectively. Then,

(
Q(bordered)

)T
B̂(bordered)Q(bordered) = Λ(s) = Q(s)B̂(s)(Q(s))T ,

which implies that

B̂(bordered) = Q(bordered)(Q(s))T B̂(s)Q(s)(Q(bordered))T .

From the definition of B̂(bordered) it also follows that

[I 0]B̂(bordered)[I 0]T = Λ(r),

where I is the (m− 1)× (m− 1) identity matrix and 0 is the zero column vector of length m− 1, and thus

B̂(r) = Q(r)Λ(r)(Q(r))T = Q(r)
[
[I 0]B̂(bordered)[I 0]T

]
(Q(r))T . (S1.2)

Combining the above, we can write

B̂(r) = Q(r)[I 0]Q(bordered)(Q(s))T B̂(s)Q(s)(Q(bordered))T [I 0]T (Q(r))T

and so (S1.1) is satisfied taking Um =
[
Q(r)[I 0]Q(bordered)(Q(s))T

]T
.

The generalization of the Cauchy interlacing thereom now follows.

∗Harry S. Truman Fellow, Quantitative Modeling & Analysis Department ktcarlb@sandia.gov
†Numerical Analysis and Applications Department, rstumin@sandia.gov
‡Quantitative Modeling & Analysis Department (retired), ptboggs@sandia.gov
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Theorem S1.3. Given two matrices B̂(s) ∈ SPD (m) and B̂(r) ∈ SPD (n) (with m ≥ n), then

∃ U such that UT B̂(s)U = B̂(r) with UTU = I (S1.3)

if and only if the eigenvalues λ
(r)
i , i = 1, . . . , n interlace the eigenvalues λ

(s)
i , i = 1, . . . ,m defined as

B̂(r)x̂
(r)
i = λ

(r)
i x̂

(r)
i , i = 1, . . . , n (S1.4)

B̂(s)x̂
(s)
i = λ

(s)
i x̂

(s)
i , i = 1, . . . ,m. (S1.5)

The definition of interlacing is given by inequality (5.5).

Proof. It is well known that if B̂(s) ∈ SPD (m) is given along with an orthogonal m× n matrix U (with

m ≥ n), then the eigenvalues of UT B̂(s)U must interlace those of B̂(s). This is referred to as the Cauchy
interlacing theorem (e.g., see [3]).

The converse of the Cauchy interlacing theorem is less widely known. The case m = n follows trivially
using an eigenvalue decomposition. The case m = n + 1 corresponds to the above corollary. The proof is
completed by generalizing the corollary to the m > n + 1 case. This follows from an inductive argument
where one considers a projection that reduces the matrix dimension of B̂(s) by one. According to the
above corollary, we have a great deal of flexibility in choosing this lower dimensional matrix if its eigenvalues
interlace those of the higher dimension matrix. We then choose a lower dimensional matrix whose eigenvalues
not only interlace those of B̂(s) but whose eigenvalues are also interlaced by those of B̂(r). That is,

λ
(s)
i ≤ µi ≤ λ

(s)
i+1 and µi ≤ λ(r)i ≤ µi+m−n−1,

where µi denotes the ith smallest eigenvalue of the intermediate matrix. Rewriting this we obtain the
following intervals for the eigenvalues µi:

µi ≥
{

max(λ
(s)
i , λ

(r)
i−m+n+1) i ≥ m− n

λ
(s)
i i < m− n

and

µi ≤
{

min(λ
(s)
i+1, λ

(r)
i ) i ≤ n

λ
(s)
i+1 i > n

.

Using the interlacing property for B̂(s) and B̂(r), one can verify that the intervals for the µi are nonempty.

That is, λ
(s)
i+1 ≥ λ

(s)
i and for those i such that λ

(r)
i−m+n+1 is defined, we have λ

(s)
i+1 ≥ λ

(r)
i−m+n+1, λ

(r)
i ≥

λ
(s)
i , and λ

(r)
i ≥ λ

(r)
i−m+n+1 Thus, there exists an orthogonal matrix Um such that the (m−1) × (m−1)

matrix UT
mB̂(s)Um has eigenvalues that are interlaced by those of B̂(r). We repeat this procedure each time

reducing the matrix dimension by one until the final reduction where we take the lower dimension matrix to
be equal to B̂(r). This implies that there exists a set of projection matrices such that UT B̂(s)U is equal to
B̂(r) where U = UmUm−1...Un+1.

Equipped with the generalized Cauchy interlacing theorem, we now prove the exactness condition for
the A (µ) term which is restated in slightly simplified notation.

Theorem S1.4. Let A (µ) have the form

A (µ) = h1 (µ) A1 + h2 (µ) A2 (S1.6)

where A1 ∈ SPD (N), A2 ∈ SPD (N), and h1, h2 : D → R.

Then,

∃ UA such that UA
T PT A (µ) P UA = VT A (µ) V, ∀µ ∈ D (S1.7)
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if and only if the eigenvalues of the general matrix pencil

B(r)x
(r)
i = λ

(r)
i D(r)x

(r)
i , i = 1, . . . , n (S1.8)

interlace the eigenvalues of

B(s)x
(s)
i = λ

(s)
i D(s)x

(s)
i , i = 1, . . . ,m (S1.9)

where

D(r) =
[
VTA1V

]
, D(s) =

[
PTA1P

]
,

B(r) =
[
VTA2V

]
, and B(s) =

[
PTA2P

]
.

The definition of interlacing is given by

λ
(s)
i ≤ λ

(r)
i ≤ λ

(s)
i+m−n for i = 1, ..., n (S1.10)

where the eigenvalues are indexed in order of increasing magnitude.
Proof. Clearly (S1.7) can only hold for any µ ∈ D and any functions h1 (µ) and h2 (µ) if and only if

UA
TD(s)UA = D(r) and UA

TB(s)UA = B(r). (S1.11)

Using a carefully chosen linear transformation, it follows that proving the theorem is equivalent to proving
the following:

∃ U such that UT B̂(s)U = B̂(r) with UTU = I (S1.12)

if and only if the eigenvalues λ
(r)
i interlace the eigenvalues of λ

(s)
i , where the eigenvalues previously defined

in Eqs. (S1.8)–(S1.9) also satisfy

B̂(r)x̂(r) = λ(r)x̂(r)

B̂(s)x̂(s) = λ(s)x̂(s).
(S1.13)

The linear transformation relies on Cholesky factorizations given by D(s) = L(s)(L(s))T and D(r) =
L(r)(L(r))T . These factors lead to the following definitions

B̂(s) = (L(s))−1B(s)(L(s))−T , x̂(s) = (L(s))Tx(s),

B̂(r) = (L(r))−1B(r)(L(r))−T , x̂(r) = (L(r))Tx(r), and

U = (L(s))TUA(L(r))−T ,

which can be used in Eqs. (S1.8), (S1.9) and (S1.11) to obtain Eqs. (S1.12) and (S1.13). The proof is
completed by recognizing that Eqs. (S1.12) and (S1.13) correspond to the generalized Cauchy interlacing
thereorm.

S1.2. Proof of Theorem 5.2. Proof. If condition 2 holds, then the unconstrained solution to problem
(5.12) is

ξA (µ?) =
((

PT ⊗PT
)
Wa

)+ (
PT ⊗PT

)
vec (A (µ?)) . (S1.14)

If condition 1 holds, then the vectorized matrix can be expressed as

vec (A (µ?)) = Waz (µ?) , (S1.15)

or equivalently

A (µ?) =

nA∑

i=1

zi (µ?) Ai, (S1.16)
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where z ≡
(
z1, . . . , znA

)
. Substituting Eq. (S1.15) into Eq. (S1.14) gives ξA (µ?) = z (µ?) and so Eq. (5.8)

yields

Ã (µ?) =

nA∑

i=1

zi (µ?) VTAiV. (S1.17)

Comparing Eqs. (S1.17) and (S1.16) gives the exactness result: Ã (µ?) = VTA (µ?)VT .

S1.3. Proof of Lemma 1. Proof. The equation ŨV

T
ŨV = I simply states that the m columns of ŨV

are orthogonal and so any orthogonal matrix ŨV satisfies the first part of (6.9). Thus, solvability amounts

to finding an orthogonal matrix ŨV such that ṼT c̃ = ŨV

T
PT c̃. For a solution to exist, however, it is

obviously necessary that ||ṼT c̃||2 = ||ŨV

T
PT c̃||2. If the vector PT c̃ lies within the span of the basis defined

by the columns of ŨV

T
, then ŨV

T
PT c̃ preserves its 2-norm and so ||ŨV

T
PT c̃||2 = ||PT c̃||2. That is,

application of ŨV

T
corresponds to a rotation of PT c̃ about the origin and so length is preserved. If instead

the vector PT c̃ lies only partially within the span of the orthogonal basis, then ||ŨV

T
PT c̃||2 < ||PT c̃||2.

That is, application of ŨV

T
corresponds to a rotation of the component of PT c̃ lying within the span of the

orthogonal basis. This implies that a necessary condition for a solution to (6.9) is that

||ṼT c̃||2 ≤ ||PT c̃||2. (S1.18)

Case 1: m = n

PT c̃ must lie within the range of ŨV (as it is a full rank square matrix) and so it is necessary to have

equality in (S1.18) when m = n. One possible ŨV in this case is obtained by first defining a Q1 ∈ Rn×n
and a Q2 ∈ Rn×n such that the first row of Q1 is α1c̃

T Ṽ with α1 = 1/‖c̃T Ṽ‖2. Likewise, the first row of
Q2 is taken as α1c̃

TP; note that α1 also normalizes this row because we assume ‖ṼT c̃‖2 = ‖PT c̃‖2. All
remaining rows are chosen so that both Q1 and Q2 are orthogonal matrices. This gives

Q1Ṽ
T c̃ = ||ṼT c̃||2e1 = ||PT c̃||2e1 = Q2P

T c̃,

where e1 is the first canonical unit vector of length n (first element is one and all other n − 1 components

are zero). A suitable ŨV that solves (6.9) is then given by ŨV

T
= QT

1 Q2. Thus, equality in (S1.18) is also
sufficient when m = n.

Case 2: m > n

The matrix ŨV is now rectangular. One possible ŨV is obtained by defining Q1 as before while instead
defining an m×m orthogonal matrix Qfull with the first row again set to α2c̃

TP with α2 = 1/‖PT c̃‖2. This
gives

Q1Ṽ
T c̃ = ||ṼT c̃||2e1 and QfullP

T c̃ = ||PT c̃||2ẽ1

where ẽ1 ∈ Rm×1 is the first canonical unit vector of length m. If ||PT c̃||2 = ||ṼT c̃||2, then a suitable
Ṽ solving (6.9) is given by taking Q2 to be the first n rows of Qfull (as Q1Ṽ

T c̃ = Q2P
T c̃) and taking

ŨV

T
= QT

1 Q2. If ||PT c̃||2 > ||ṼT c̃||2, then we define a vector y as an arbitrary linear combination of the
last m− n rows of Qfull such that y has unit norm. The first row of Q2 is then taken as

(Q2)1 = α3
PT c̃

||PT c̃||2
+
√

1− α2
3 y,

where (Q)k denotes the kth row of a matrix Q and α3 = ||ṼT c̃||2/||PT c̃||2. The remaining rows of Q2 are
simply (Qfull)k for k = 2, . . . , n. It is easy to verify that Q2 is again orthogonal and that Q2P

T c̃ = ||ṼT c̃||2e1.

Thus, Q2P
T c̃ = ||ṼT c̃||2e1 and ŨV

T
= QT

1 Q2 is a possible solution implying that ||PT c̃||2 ≥ ||ṼT c̃||2 is a
necessary and sufficient condition when m > n.
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S2. Solving the matrix gappy POD optimization problem. This approach reformulates the
constraints of problem (5.12) in terms of eigenvalues of the reduced matrix. That is, problem (5.12) is
reformulated as

minimize
x≡(x1,...,xnA)

‖PTA (µ)P−
nA∑

k=1

PTAkPxk‖2F

subject to λ̃j(x) ≥ ε > 0, j = 1, . . . , n.

(S2.1)

Here, λ̃j(x), j = 1, . . . , n are the eigenvalues of the low-dimensional matrix
nA∑
i=1

VTAiVxi and ε denotes a

numerical threshold for defining a full-rank matrix. This problem can be numerically solved, e.g., using a
gradient-based algorithm.

The gradient of the quadratic objective function is obvious. The gradient of the constraint can be derived
by assuming distinct eigenvalues:

∂λ̃j
∂xi

= ỹTj

∂

(
nA∑
k=1

VTAkVxk

)

∂xi
ỹj (S2.2)

= ỹTj
(
VTAiV

)
ỹj . (S2.3)

Here, ỹj is the eigenvector associated with eigenvalue λ̃j . This indicates that computing the gradient
∂λ̃j

∂xi
is

inexpensive and requires the following steps:

1. Compute the eigenvector ỹj ∈ Rn of the matrix
nA∑
k=1

VTAkVxk.

2. Compute the low-dimensional matrix–vector product w =
(
VTAiV

)
ỹj .

3. Compute the low-dimensional vector–vector product ỹTj w.
We propose using the unconstrained solution to problem (S2.1) as the initial guess. In practice, this

solution is often feasible, so it is typically unnecessary to handle the constraints directly. In the rare cases
where it is necessary to deal with multiple equal eigenvalues—or a number of nearby eigenvalues—the
methods presented by Andrew and Tan [1] can be used to produce a numerically stable gradient of the
constraint; this was not required in the numerical experiments reported in Section 7.

S3. Proper orthogonal decomposition. Algorithm S1 describes the method for computing a proper
orthogonal decomposition (POD) basis given a set of snapshots. The method amounts to computing the
singular value decomposition of the snapshot matrix; the left singular vectors define the POD basis.

Algorithm S1 Proper-orthogonal-decomposition basis computation (normalized snapshots)

Input: Set of snapshots X ≡ {xi}nx
i=1 ⊂ RN , energy criterion η ∈ [0, 1]

Output: W (X , η)
1: Compute the thin singular value decomposition X = UΣVT , where X ≡ [x1/‖x1‖ · · · xnx/‖xnx‖].
2: Choose dimension of truncated basis n = ne(η), where

ne(η) ≡ min
i∈V(η)

i

V(η) ≡ {n ∈ {1, . . . , nx} |
n∑

i=1

σ2
i /

nx∑

j=1

σ2
j ≥ η},

and Σ ≡ diag (σi) with σ1 ≥ · · · ≥ σnx ≥ 0.
3: W (X , η) =

[
u1 · · · un

]
, where U ≡

[
u1 · · · unx

]
.

S4. Numerical experiments: extra plots. This section provides supplementary plots associated
with numerical experiments carried out in Section 7.
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Fig. S4.1. Conservative, varying-parameters case: reduced-order model performance as a function of sampling percentage
m/N × 100%.
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Fig. S4.2. Conservative, varying-parameters case: reduced-order model responses as a function of sampling percentage
m/N × 100% for online points 2 and 3. Legend: full-order model (black), Galerkin ROM (dark blue), structure-preserving
ROM method 1 (magenta), structure-preserving ROM method 2 (light blue), gappy POD ROM (red), collocation ROM (green),
end of training time interval (black circle).
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Fig. S4.3. Non-conservative, parameter-varying case: reduced-order model responses as a function of sampling percentage
m/N × 100%. Legend: full-order model (black), Galerkin ROM (dark blue), structure-preserving ROM method 1 (magenta),
structure-preserving ROM method 2 (light blue), gappy POD ROM (red), collocation ROM (green), end of training time
interval (black circle).
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Fig. S4.4. Non-conservative, parameter-varying case: reduced-order model performance as a function of sampling per-
centage m/N × 100%.
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(c) predictions at online points 2 and 3, 80% sampling

Fig. S4.5. Non-conservative, highly nonlinear parameter-varying case: reduced-order model responses as a function of
sampling percentage m/N × 100%. Legend: full-order model (black), Galerkin ROM (dark blue), structure-preserving ROM
method 1 (magenta), structure-preserving ROM method 2 (light blue), gappy POD ROM (red), collocation ROM (green), end
of training time interval (black circle).
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Fig. S4.6. Non-conservative, highly nonlinear parameter-varying case: reduced-order model performance as a function of
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Chapter 2

Decreasing the temporal complexity for
nonlinear, implicit reduced-order models by
forecasting

This chapter presents a method for decreasing the temporal complexity of nonlinear reduced-order
models. Here, we define temporal complexity as the number of Newton-like iterations executed
over the course of a simulation. The methodology exploits time-domain data—not just spatial-
domain data—along with the gappy POD approximation method to reduce this complexity. The
method can be treated as a ‘free accelerator’ by nonlinear model-reduction methods, as it almost
always leads to speedups (as we show in experiments), and does not incur any additional solution
error. This work has been submitted to Computer Methods in Applied Mechanics and Engineering
and is past the first round of revisions at the time of this writing.
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Decreasing the temporal complexity for
nonlinear, implicit reduced-order models by forecasting

Kevin Carlberg, Jaideep Ray, and Bart van Bloemen Waanders
Sandia National Laboratories1

7011 East Ave, MS 9159, Livermore, CA 94550

Abstract

Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic
equations at each time step. Each of these systems is often solved by a Newton-like method, which
incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit
knowledge of system’s spatial behavior to reduce the computational complexity of each linear-system
solve. However, the number of linear-system solves for the reduced-order simulation often remains
roughly the same as that for the full-order simulation.

We propose exploiting knowledge of the model’s temporal behavior to 1) forecast the unknown
variable of the reduced-order system of nonlinear equations at future time steps, and 2) use this
forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To
compute the forecast, we propose using the Gappy POD technique. The goal is to generate an accurate
initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing
the number of linear-system solves in the reduced-order-model simulation.

Keywords: nonlinear model reduction, Gappy POD, temporal correlation, forecasting, initial guess

1. Introduction

High-fidelity physics-based numerical simulation has become an indispensable engineering tool
across a wide range of disciplines. Unfortunately, such simulations often bear an extremely large com-
putational cost due to the large-scale, nonlinear nature of many high-fidelity models. When an implicit
integrator is employed to advance the solution in time (as is often essential, e.g., for stiff problems) this
large cost arises from the need to solve a sequence of high-dimensional systems of nonlinear algebraic
equations—one at each time step. As a result, individual simulations can take weeks or months to com-
plete, even when high-performance computing resources are available. This renders such simulations
impractical for time-critical and many-query applications. For example, uncertainty-quantification
applications (e.g., Bayesian inference problems) call for hundreds or thousands of simulations (i.e.,
forward solves) to be completed in days or weeks; in-the-field analysis (e.g., guidance in-field data
acquisition) requires near-real-time simulation.

Projection-based nonlinear model-reduction techniques have been successfully applied to decrease
the computational cost of high-fidelity simulation while retaining high levels of accuracy. To accomplish
this, these methods exploit knowledge of the system’s dominant spatial behavior—as observed during
‘training simulations’ conducted a priori—to decrease the simulation’s spatial complexity, which we

1Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under contract DE-AC04-94-AL85000.
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define as the computational cost of each linear-system solve.2 To do so, these methods 1) decrease
the dimensionality of the linear systems by projection, and 2) approximate vector-valued nonlinear
functions by sampling methods that compute only a few of the vector’s entries (e.g., empirical in-
terpolation [1, 2], Gappy POD [3]). However, these techniques are often insufficient to adequately
reduce the computational cost of the simulation. For example, Ref. [4] presented results for the
GNAT nonlinear model-reduction technique applied to a large-scale nonlinear turbulent-flow problem.
The reduced-order model generated solutions with sub-1% errors, reduced the spatial complexity by
a factor of 637, and employed only 4 computing cores—a significant reduction from the 512 cores
required for the high-fidelity simulation. However, the total number of linear-system solves required
for the reduced-order-model simulation, which we define as the temporal complexity, remained large.
In fact, the temporal complexity was decreased by a factor of only 1.5. As a result, the total com-
puting resources (computing cores × wall time) required for the simulation were decreased by a factor
of 438, but the wall time was reduced by a factor of merely 6.9. While these results are promising
(especially in their ability to reduce spatial complexity), the time integration of nonlinear dynamics
remains problematic and often precludes real-time performance.

The goal of this work is exploit knowledge of the system’s temporal behavior as observed during
the training simulations to decrease the temporal complexity of reduced-order-model simulations. For
this purpose, we first briefly review methods that exploit observed temporal behavior to improve
computational performance.

Temporal forecasting techniques have been investigated for many years with a specific focus on re-
ducing wall time in a stable manner with maximal accuracy. The associated body of work is large and
a comprehensive review is beyond the scope of this paper. However, this work focuses on time integra-
tion for reduced-order models of highly nonlinear dynamical systems; several categories of specialized
research efforts provide an appropriate context for this research.

At the most fundamental level of temporal forecasting, a variety of statistical time-series-analysis
methods exist that exploit 1) knowledge of the temporal structure, e.g., smoothness, of a model’s
variables, and 2) previous values of these variables for the current time series or trajectory. The
connection between these methods and our work is that such forecasts can serve as an initial guess for an
iterative solver (e.g., Newton’s method) at an advanced point in time. However, the disconnect between
such methods and the present context is that randomness and uncertainty drive time-series analysis; as
such, these forecasting methods are stochastic in nature (see Refs. [5, 6, 7, 8, 9, 10, 11, 12]). In addition,
the majority of time-series analyses have been applied to application domains (e.g., economics) with
dynamics that are not generally modeled using partial differential equations. Finally, such forecasting
techniques do not exploit a collection of observed, complete time histories from training experiments
conducted a priori. Because such training simulations lend important insight into the spatial and
temporal behavior of the model, we are interested in developing a technique that can exploit such
data.

Alternatively, time integrators for ordinary differential equations (ODEs) employ polynomial ex-
trapolations to provide reasonably accurate forecasts of the state or the unknown at each time step.
Time integrators employ such a forecast for two purposes. First, algorithms with adaptive time steps
employ interpolation to obtain solutions (and their time derivatives) at arbitrary points in time. Im-
plicit time integrators for nonlinear ODEs, which require the iterative solution of nonlinear algebraic
systems at each time step, use recent history (of the current trajectory) to forecast an accurate guess
of the unknown in the algebraic system (see, e.g., Ref. [13]). Again, forecasting by polynomial extrap-
olation makes no use of the temporal behavior observed during training simulations.

Closely connected to time integration but specialized to leverage developments in high-performance

2A sequence of linear systems arises at each time step when a Newton-like method is employed to solve the system
of nonlinear algebraic equations.
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computing, time parallel methods can offer computational speedup when integrating ODEs. Dating
back to before the general availability of parallel computers, researchers speculated about the benefits
of decomposing the temporal domain across multiple processors [14]. Advancements have been made
from parallel multigrid to parareal techniques [15, 16, 17, 18]. Although time-domain decomposition
algorithms have demonstrated speedup, they are limited in comparison to the spatial domain decom-
position methods and they require a careful balance between stability and computational efficiency
[19]. It is possible that these methods could further improve performance in a model-reduction setting
[20] (and could complement the method proposed in this work), but near real-time performance is
likely unachievable through time-parallel methods alone.

To some extent, exploiting temporal behavior has been explored in nonlinear model reduction.
Bos et al. [21] proposed a reduced-order model in the context of explicit time integration wherein the
generalized coordinates are computed based on a best-linear-unbiased (BLU) estimate approach. Here,
the reduced state coordinates at time step n + 1 are computed using empirically derived correlations
between the reduced state coordinates and 1) their value at the previous time step, 2) the forcing
input at the previous time step, and 3) a subset of the full-order state. However, the errors incurred by
this time-integration procedure (compared with standard time integration of the reduced-order model)
are not assessed or controlled. This can be problematic in realistic scenarios, where error estimators
and bounds are essential. Another class of techniques known as a priori model reduction methods
[22, 23] build a reduced-order model ‘on the fly’, i.e., over the course of a given time integration.
These techniques aim to use the reduced-order model at as many time steps as possible; they revert
to the high-fidelity model when the reduced-order model is deemed to be inaccurate. In effect, these
techniques employ the reduced-order model as a tool to accelerate the high-fidelity-model simulation.
In contrast, this work aims to accelerate the reduced-order-model simulation itself. Further, these
methods differ from the present context in that there are no training experiments conducted a priori
from which to glean insight into the model’s temporal behavior.

In this work, we propose a method that exploits a set of complete trajectories observed during
training simulations to decrease the temporal complexity of a reduced-order-model simulation. The
method 1) forecasts the unknown variable in the reduced-order system of nonlinear algebraic equations,
and 2) uses this forecast as an initial guess for the Newton-like solver. To compute the forecast, the
method employs the Gappy POD method [3], which extrapolates the unknown variable at future time
steps by exploiting the unknown variable for the previous α time steps (where α can be interpreted as
the memory of the process), and a database of time histories of the unknown variable. If the forecast
is accurate, then the Newton-like solver will require very few iterations to converge, thereby decreasing
the number of linear-system solves needed for the simulation. The method is straightforward to
implement: the (offline) training stage simply requires collecting an additional set of snapshots during
the training simulations. In some scenarios, no additional offline work is required. The (online)
reduced-order-model simulation simply requires an external routine for determining the initial guess
for the Newton-like solver.

2. Problem formulation

This section provides the context for this work. Section 2.1 describes the class of full-order models
we consider, which includes first- and second-order ODEs numerically solved by implicit time integra-
tion. Section 2.2 describes the reduced-order modeling strategies for which the proposed technique is
applicable.
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2.1. Full-order model

2.1.1. First- and second-order ODEs

First, consider the parameterized nonlinear first-order ODE corresponding to the full-order model
of a dynamical system:

ẋ = f (x; t,p (t) , q) (1)

x(0,p, q) = x0 (q) . (2)

Here, time is denoted by t ∈ [0, T ], the time-dependent forcing inputs are denoted by p : [0, T ]→ Rp,
the time-independent parametric inputs are denoted by q ∈ D ⊆ Rq with D denoting the parameter
domain, and f : RN × [0, T ]× Rp × Rq → RN is nonlinear in at least its first argument. The state is
denoted by x ≡ x(t,p, q) ∈ RN with N denoting the number of degrees of freedom in the model. The
parameterized initial condition is x0 : Rp → RN .

Because this work addresses both first- and second-order ODEs, consider also the parameterized
nonlinear second-order ODE corresponding to the full-order model of a dynamical system:

ẍ = g (x, ẋ; t,p (t) , q) (3)

x(0,p, q) = x0 (q) (4)

ẋ(0,p, q) = v0(q). (5)

Here, the function g : RN × RN × [0, T ] × Rp × Rq → RN is nonlinear in at least its first or second
argument, and the parameterized initial velocity is denoted by v0 : Rp → RN .3

2.1.2. Implicit time integration

Given forcing and parametric inputs, the numerical solution to the full-order model described by
Eqs. (1)–(2) or (3)–(5) can be computed via numerical integration. For stiff systems, an implicit
integration method is often the most computationally efficient choice; it is even essential in many cases
[24]. When an implicit time integrator is employed, s coupled N -dimensional systems of nonlinear
algebraic equations are solved at each time step n = 1, . . . ,M , where M denotes the total number of
time steps:

rni
(
wn,1, . . . ,wn,s;p, q

)
= 0, i = 1, . . . , s. (6)

Here, the function rni : RN × · · · × RN × Rp × Rq → RN is nonlinear in at least one of its first s
arguments and the unknowns wn,i ∈ RN , i = 1, . . . , s are implicitly defined by (6). As discussed in
Appendix A and Appendix B, the unknowns wn,i represent the state, velocity, or acceleration at
points tn−1 + cih

n, where ci ∈ [0, 1] is defined by the time integrator:

wn,i ≡ wn,i(p, q) ≡ w(tn−1 + cih
n;p, q). (7)

Thus, a superscript n denotes the value of a quantity at time tn ≡
n∑
k=1

hk, a superscript n, i denotes

the value of a quantity at time tn,i ≡
n−1∑
k=1

hk + cih
n, and h denotes the time-step size.

After the unknowns are computed by solving Eq. (6), the state is explicitly updated as

xn = γxn−1 +
s∑

i=1

δiw
n,i, (8)

3Note that an N -dimensional second-order ODE can be rewritten as 2N -dimensional first-order ODE.
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where γ and δi, i = 1, . . . , s are scalars defined by the integrator. For second-order ODEs, the velocity
is also updated explicitly as

ẋn = εẋn−1 +
s∑

i=1

ξiw
n,i, (9)

where ε and ξi, i = 1, . . . , s are also scalars defined by the integrator. Appendix A and Appendix B
specify the form of Eqs. (6)–(9) for important classes of implicit numerical integrators for first- and
second-order ODEs, respectively.

The chief computational burden of solving Eq. (1) with an implicit integrator lies in solving nonlin-
ear equations (6) at each time step; this is typically done with a Newton-like method. In particular, if
K̄ denotes the average number of Newton-like iterations required to solve (6), then the full-order-model
simulation requires solving K̄M linear systems of dimension sN .4 We denote the simulation’s spatial
complexity to be the computational cost of solving each linear system; we consider the simulation’s
temporal complexity to be the total number of linear-system solves.

The spatial complexity contributes significantly to the computational burden for large-scale systems
because N is large. However, the temporal complexity is also significant for such problems. First, the
number of total time steps M is often proportional to a fractional power of N . This occurs because
refining the mesh in space often necessitates a decrease in the time-step size to balance the spatial
and temporal errors.5 Second, the average number of Newton-like iterations K̄ can be large when the
problem is highly nonlinear and large time steps are taken, which is common for implicit integrators.
Under these conditions, the initial guess for the Newton solver, which is often taken to be a polynomial
extrapolation of the unknown, can be far from the true value of the unknown.

In many cases (e.g., linear multi-step methods, single-stage Runge–Kutta schemes), s = 1. For
this reason, and for the sake of notational clarity, the remainder of this paper assumes s = 1, and
wn designates the value of the unknown variable at time tn,1. However, we note that the proposed
technique can be straightforwardly extended to s > 1.

2.2. Reduced-order model

Nonlinear model-reduction techniques aim to generate a low-dimensional model that is inexpensive
to evaluate, yet captures key features of the full-order model. To do so, these methods first perform
analyses of the full-order model for a set of ntrain training parametric and forcing points {(pk, qk)}ntrain

k=1

during a computationally intensive ‘offline’ training stage. These analyses may include integrating the
equations of motion, modal decomposition, etc.

Then, the data generated during these analyses are employed to decrease the the cost of each linear-
system solve via two approximations: 1) dimensionality reduction, 2) nonlinear-function approximation
(spatial-complexity reduction). Once these approximations are defined, the resulting reduced-order
model is employed to perform computationally inexpensive analyses for any inputs during the ‘online’
stage.

4Assuming the Jacobian of the residual is sparse with an average number of nonzeros per row ω � N , the dominant
computational cost of solving Eqs. (6) for the entire simulation is O

(
ω2sNKM

)
if a direct linear solver is used. It

is O (LωsNKM) if an iterative linear solver is used. Here, L denotes the average number of matrix-vector products
required to solve each linear system in the case of an iterative linear solver.

5This is not necessarily true for explicit time-integration schemes, when the time-step size is limited by stability
rather than accuracy. In this case, Krysl et al. [25] showed that employing a low-dimensional subspace for the state
may improve stability and therefore permit a larger time-step size. As a result, the reduced-order state equations can
be solved fewer times than the full-order state equations.
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2.2.1. Dimensionality reduction

Model-reduction techniques decrease the number of degrees of freedom by computing an approxi-
mate state x̃ ≈ x that lies in an affine trial subspace of dimension N̂ � N :

x̃(t,p, q) = x̄ (q) + Φx̂(t,p, q) (10)

˙̃x(t,p, q) = Φ ˙̂x(t,p, q) (11)

¨̃x(t,p, q) = Φ¨̂x(t,p, q). (12)

Here, the trial basis (in matrix form) is denoted by Φ ≡
[
φ1 · · · φN̂

]
∈ RN×N̂ with ΦTΦ = I. The

generalized state is denoted by x̂ ≡
[
x̂1 · · · x̂N̂

]T ∈ RN̂ . The reference state is x̄ ∈ RN , which is
often set to zero. The initial condition for the reduced-order model is obtained by projecting the
full-order-model initial condition onto this affine subspace such that

x̃(0,p, q) = x̄ (q) + ΦΦT
(
x0 (q)− x̄ (q)

)
(13)

˙̃x(0,p, q) = ΦΦTv0(q). (14)

When the unknown variable computed at each time step (see Section 2.1.2) corresponds to the state,
velocity, or acceleration, this dimensionality reduction for the state results in the following dimension-
ality reduction for the unknown:

w̃(t,p, q) = w̄ (q) + Φŵ(t,p, q), (15)

where w̄ (q) = x̄ (q) if the unknown is the state and w̄ (q) = 0 otherwise, and ŵ ≡
[
ŵ1 · · · ŵN̂

]T ∈ RN̂
denotes the vector of generalized unknowns.

Substituting Eqs. (10)–(11) into (1) yields

Φ ˙̂x = f (x̄ (q) + Φx̂; t,p (t) , q) , (16)

Alternatively, substituting Eq. (10)–(12) into (3) yields

Φ¨̂x = g
(
x̄ (q) + Φx̂,Φ ˙̂x; t,p (t) , q

)
. (17)

The overdetermined ODEs described by (16) and (17) may not be solvable, because image(f) 6⊂
range(Φ) and image(g) 6⊂ range(Φ) in general. Several methods exist to compute an approximate
solution.

Project, then discretize in time. This class of model-reduction methods first carries out a projection
process on the ODE followed by a time-integration of the resulting low-dimensional ODE. The (Petrov–
Galerkin) projection process enforces orthogonality of the residual corresponding to the overdetermined

ODE (16) or (17) to an N̂ -dimensional test subspace range(Ψ), with Ψ ∈ RN×N̂ . Assuming ΨTΦ is
invertible, this leads to the following for first-order ODEs:

˙̂x =
(
ΨTΦ

)−1

ΨTf (x̄ (q) + Φx̂; t,p (t) , q) . (18)

For second-order ODEs, the result is

¨̂x =
(
ΨTΦ

)−1

ΨTg
(
x̄ (q) + Φx̂,Φ ˙̂x; t,p (t) , q

)
, (19)

Galerkin projection corresponds to the case where Ψ = Φ.
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Because Eq. (18) (resp. (19)) is an ODE of the same form as (1) (resp. (3)), it can be solved using
the same numerical integrator that was used to solve Eq. (1) (resp. (3)). Further, the same time-step
sizes are often employed, as the time-step size is determined by accuracy (not stability) for implicit
time integrators. For both first- and second-order ODEs, this again leads to a system of nonlinear
equations to be solved at each time step n = 1, . . . ,M :

(
ΨTΦ

)−1

ΨTrn (w̄ (q) + Φŵn;p, q) = 0. (20)

The unknown ŵn can be computed by applying Newton’s method to (20). Then, the explicit updates
(8)–(9) can proceed as usual to compute the resulting state.

Discretize in time, then project. This class of model-reduction techniques first applies the same nu-
merical integrator that was used to solve (1) to the overdetermined ODE (16) or (17). However, the
resulting algebraic system of N nonlinear equations in N̂ unknowns remains overdetermined:

rn (w̄ (q) + Φŵn;p, q) = 0. (21)

To compute a unique solution to Eq. (21), orthogonality of the discrete residual rn to a test subspace
range (Ψ) can be enforced. However, this leads to a reduced system of nonlinear equations equivalent
to (20). So, in this case, the two classes of model-reduction techniques are equivalent.

On the other hand, to compute a unique solution to (21), the discrete-residual norm can be mini-
mized [26, 4, 27, 28, 29], which ensures discrete optimality [4]:

ŵn = arg min
y∈RN̂

‖rn (w̄ (q) + Φy;p, q) ‖22. (22)

The unknown ŵn can be computed by applying a Newton-like nonlinear least-squares method (e.g.,
Gauss–Newton, Levenberg–Marquardt) to problem (22). Again, explicit updates for the state (8)–(9)
can proceed after the unknowns are computed.

2.2.2. Spatial-complexity reduction

For nonlinear dynamical systems, the dimensionality reduction described in Section 2.2.1 is insuf-
ficient to guarantee a reduction in the computational cost of each linear-system solve. The reason is
that the full-order residual depends on the state, so it must be recomputed and subsequently projected
or minimized at each Newton-like iteration.

For this reason, nonlinear model-reduction techniques employ a procedure to reduce the spatial-
complexity, i.e., decrease the computational cost of computing and projecting or minimizing the non-
linear residual. Such techniques are occasionally referred to as ‘hyper-reduction’ techniques [22]. In
particular, the class of ‘function sampling’ techniques replace the full-order nonlinear residual with an
approximation r̃ ≈ r that is inexpensive to compute. Then, rn ← r̃n is employed in (20) or (22) to
compute the unknowns ŵn.

Methods in this class can be categorized as follows:

1. Collocation approaches. These methods employ a residual approximation that sets many of the
residual’s entries to zero:

r̃n = ZTZrn. (23)

Here, Z ∈ {0, 1}nZ×N is a sampling matrix consisting of nZ � N selected rows of IN×N . This
approach has been developed for Galerkin projection [30, 22] and discrete-residual minimization
[29].
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2. Function-reconstruction approaches. These methods employ a residual approximation that com-
putes a few entries of the residual or nonlinear function, and subsequently ‘fills in’ the remaining
entries via interpolation or least-squares regression. That is, these methods apply one of the
following approximations:

r̃n = ΦR (ZΦR)
+
Zrn (24)

f̃ = Φf (ZΦf )
+
Zf (25)

g̃ = Φg (ZΦg)
+
Zg. (26)

Here, ΦR, Φf , and Φg are empirically derived bases used to approximate the nonlinear residual,
velocity, and acceleration, respectively. A superscript + denotes the Moore–Penrose pseudoin-
verse. When the bases are computed via POD, this technique is known as Gappy POD [3]. This
approach has been developed for Galerkin projection [30, 21, 2, 31, 32] and discrete-residual
minimization [26, 4]. In particular, the discrete empirical interpolation (DEIM) method [2] is
a specific case of Gappy POD for first-order ODEs, Galerkin projection, and the interpolatory
case, i.e., DEIM uses approximation (25) in Eq. (18) with Ψ = Φ and sets the number of sam-
ple indices nZ equal to the number of columns in the matrix Φf . The GNAT method [26, 4]
employs Gappy POD of the residual in a discrete residual minimization setting, i.e., GNAT uses
approximation (24) in Eq. (22).

3. Temporal-complexity reduction

While the model-reduction approaches described in the previous section decrease the computational
cost of each linear-system solve (i.e., spatial complexity), they do not necessarily decrease the number
of linear-system solves (i.e., temporal complexity). The goal of this work is devise a method that
decreases this temporal complexity while introducing no additional error.

3.1. Method overview

The main idea of the proposed approach is to compute an accurate forecast of the generalized
unknowns at future time steps using the Gappy POD procedure, and employ this forecast as an initial
guess for the Newton-like solver at future time steps.

Gappy POD is a technique to reconstruct vector-valued data that has ‘gaps,’ i.e., entries with
unknown or uncomputed values. Mathematically, the approach is equivalent to least-squares regression
in one discrete-valued variable using empirically computed basis functions. It was introduced by
Everson and Sirovich [3] for the purpose of image reconstruction. It has also been used for static
[33, 34] and time-dependent [35, 36] flow field reconstruction, inverse design [34], design variable
mapping for multi-fidelity optimization [37], and for decreasing the spatial complexity in nonlinear
model reduction [30, 21, 26, 4]. This work proposes a novel application of Gappy POD: as a method
for forecasting the generalized unknown at future time steps during a reduced-order-model simulation.

During the offline stage, the proposed method computes a ‘time-evolution basis’ for each generalized
unknown ŵj , j = 1, . . . , N̂ . Each basis represents the complete time-evolution of a generalized unknown
as observed during training simulations. Figure 1(a) depicts this idea graphically, and Section 3.2
describes a computationally inexpensive way to compute these bases.

During the online stage, the method computes a forecast of the generalized unknowns at future
time steps via Gappy POD. This forecast employs 1) the time-evolution bases and 2) the generalized
unknowns computed at several previous time steps. Figure 1(b) depicts this, and Section 3.3 describes
the forecasting method in detail. At future time steps, this forecast is employed as an initial guess
for the Newton-like solver. If the forecast is accurate, the Newton-like solver will converge in very few
iterations; if it is inaccurate, the Newton-like solver will require more iterations for convergence. Note
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Figure 1: Graphical depiction of the proposed method

that the accuracy of the solution is not hampered in either case (assuming a globalization strategy
is employed). If the number of Newton iterations required for convergence is large, this indicates
an inaccurate initial guess. When this occurs, the method computes a new forecast using the most
recently computed generalized unknowns.

The proposed method is expected to be effective if 1) the temporal behavior of the generalized
unknowns is similar across input variation and 2) the original model is not too weakly nonlinear at
each time step. The latter issue can hamper the proposed method’s performance because it is difficult
to reduce the number of Newton iterations if the original number is already very small. This situation
can occur, for example, if the simulation employs a very small time step. However, this is uncommon for
(unconditionally stable) implicit time integrators, where taking the largest time step while maintaining
accuracy is typically the most computationally efficient approach.

The proposed method is independent of the dimensionality-reduction or spatial-complexity-reduction
scheme employed by the reduced-order model; further, the method is applicable (without modification)
to both first- and second-order ODEs. The next sections describe the offline and online steps of the
methodology in detail.

3.2. Offline stage: compute the time-evolution bases

The objective of the offline stage is to compute the time-evolution bases that will be used for the
online forecast. Ideally, the bases should be able to describe the time evolution of the generalized state
for any forcing inputs p and parametric inputs q. If the bases are ‘bad’, then the forecasting step of
the algorithm will be inaccurate, and there may be no reduction in the average number of Newton-like
iterations.
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We propose employing a POD basis for the time evolution of the generalized unknown. This basis
is computed a priori during ‘offline’ simulations of the reduced-order model in three steps:

1. Collect snapshots of the unknown during each of the ntrain training simulations:

Y k =
[
w0
(
pk, qk

)
· · · wM−1

(
pk, qk

)]
(27)

for k = 1, . . . , ntrain, with Y k ∈ RN×M . Here, pk ∈ Rp denotes the forcing inputs for training
simulation k, and qk ∈ Rq denotes the parametric inputs for training simulation k.

2. Compute the corresponding snapshots of the generalized unknown:

Ŷ k ≡ ΦT
[
Y k − w̄ (qk) 1T

]
(28)

=
[
ŵ0 (pk, qk

)
· · · ŵM−1 (pk, qk

)]
(29)

for k = 1, . . . , ntrain, where orthogonality of the trial basis ΦTΦ = I has been used. Here,

Ŷ k ∈ RN̂×M and 1 ∈ RM denotes a vector of ones.

3. Compute the time-evolution bases via the (thin) singular value decomposition (SVD). Defining

the jth column of Ŷ
T

k as ŷj,k ∈ RM , j = 1, . . . , N̂ , we note that ŷj,k can be interpreted as a
snapshot of the time evolution of the jth generalized unknown ŵj during training simulation k.
Then, this step amounts to

[
ŷj,1 · · · ŷj,ntrain

]
= U jΣjV

T
j (30)

Ξj =
[
uj,1 · · · uj,aj

]
, (31)

for j = 1, . . . , N̂ . Here, U j ≡ [uj,1 · · · uj,ntrain
] ∈ RM×ntrain and aj ≤ ntrain.

After the time-evolution bases Ξj ∈ RM×aj , j = 1, . . . , N̂ have been computed during the offline stage,
they can be used to accelerate online computations via forecasting. The next section describes this.

Remark. In some cases, many of the above offline steps are already completed as part of the
existing model-reduction process. For example, the snapshot matrices Y k, k = 1, . . . , ntrain in
Step 1 are already available if proper orthogonal decomposition (POD) is employed to compute
Φ and the time integrator’s unknown is the state (e.g., linear multistep schemes). If additionally
ntrain = 1 and the POD basis is computed via the SVD of the reference-centered state snapshots, i.e.,[
x0
(
p1, q1

)
− x̄

(
q1
)
· · · xM−1

(
p1, q1

)
− x̄

(
q1
)]

= ŪΣ̄V̄
T

with φi = ūi, i = 1, . . . , N̂ , then Ŷ 1 of

Step 2 is already available as Ŷ 1 = Σ̄[1 : N̂ , 1 : N̂ ]V̄ [1 : M, 1 : N̂ ]T . Here, the square bracket indi-
cates a submatrix over the specified range of row and column indices and Ū ≡ [ū1 · · · ūM ]. Further,
in this case the matrices U j in Step 3 are also available as U j = uj,1 = v̄j , j = 1, . . . , N̂ , where
V̄ ≡ [v̄1 · · · v̄M ].

3.3. Online stage: forecast

During the online stage, the method employs a forecasting procedure to define the initial guess for
the Newton-like solver. To compute this forecast, it uses the time evolution bases (computed offline),
and the values of the generalized unknown at the previous α time steps (computed online). Here, α is
considered the ‘memory’ of the process. Because the forecast is defined at all time steps (see the blue
curve in Figure 1(b)), it is used as the initial guess at future time steps until the number of Newton
iterations exceeds a threshold value τ . This indicates a poor forecast. In this case, the forecast is
recomputed using the most recent values of the generalized unknown.
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Algorithm 1 Online: implicit time integration with the temporal-complexity-reduction method

Input: Time-evolution bases Ξj ∈ RM×aj , j = 1, . . . , N̂ ; maximum memory αmax with
αmax ≥ max

j
aj ; Newton-step threshold τ

Output: Generalized state at all M time steps: x̂n, n = 1, . . . ,M .
Generalized velocity at all M time steps if solving a second-order ODE: ˙̂xn, n = 1, . . . ,M .

1: for n = 1, . . . ,M do {time-step loop}
2: if forecast ŵ(tn−1 + c1h

n) is available then

3: Set initial guess for Newton solver to ŵ
n(0)
j = ŵj(t

n−1 + c1h
n), j = 1, . . . , N̂ .

4: else
5: Use typical initial guess for Newton solver (e.g., polynomial extrapolation of unknown).
6: end if
7: Compute generalized unknowns ŵn by solving reduced-order equations (20) or (22) with a

Newton-like method and specified initial guess ŵn(0).
Let Kn denote the number of Newton-like iterations required for convergence at time step n.

8: Compute the generalized state x̂n using explicit update (8). If solving a second-order ODE, also
update the generalized velocity ˙̂xn using explicit update (9).

9: if Kn > τ and (n− 1) ≥ max
j
aj then {recompute forecast using most recent data}

10: Set memory α← min(n− 1, αmax).
11: Compute forecasting coefficients zj , j = 1, . . . , N̂ using the unknown at the previous α time

steps by solving Eq. (32).
12: Set forecast to be ŵj = Ξjzj and define ŵj ≡ h−1

(
ŵj

)
, j = 1, . . . , N̂ .

13: end if
14: end for

If the forecast is accurate, then the number of iterations needed to converge from the (improved)
initial guess will be drastically reduced, thereby decreasing K̄ and hence the temporal complexity.
Algorithm 1 outlines the proposed technique.

To compute the forecasting coefficients in step 11 of Algorithm 1, we propose using the Gappy
POD approach introduced by Everson and Sirovich [3]. This approach computes coefficients zj via
the following linear least-squares problem:

zj = arg min
z∈Raj

‖Z(n, α)Ξjz −Z(n, α)h (ŵj) ‖ (32)

Here, the matrix Z(n, α) ∈ {0, 1}α×M is the sampling matrix that selects entries corresponding to the
previous α time steps:

Z(n, α) ≡ [en−α−1 · · · en−1]
T
, (33)

where ei denotes the ith canonical unit vector. Note that α ≥ aj is required for Eq. (32) to have a
unique solution. The function h in (32) ‘unrolls’ time according to the time discretization; we define

h : x 7→ x with x ≡ [x1 · · · xM ]
T ∈ RM as

xn = x(tn−1 + c1h
n), n = 1, . . . ,M. (34)

The online cost to compute this forecast is very small, as it entails solving N̂ small-scale linear least-
squares problem (32) characterized by a α × aj matrix. For this reason, it is generally advantageous
to employ a small value of τ (i.e., 0 or 1), which results in a frequent (inexpensive) recomputation of
the forecast.
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4. Numerical experiments

These numerical experiments assess the performance of the proposed temporal-complexity-reduction
method on a structural-dynamics example using three reduced-order models: Galerkin projection (Eq.
(19) with Ψ = Φ), Galerkin projection with least-squares reconstruction of the residual (Eq. (24)),
and a structure-preserving reduced-order model [38]. We do not present results for a collocation ROM
(see Eq. (23)), as this approach was unstable in most cases, even when 60% of the degrees of freedom
were selected as sample indices (i.e., nZ/N = 0.6). Section 4.1 provides a description of the problem—
a parameterized, damped clamped–free truss structure subjected to external forces—and details the
experimental setup. We then consider a sequence of problems that poses increasing difficulty to the
method.

Section 4.2 considers the ideal scenario for the method: the online points are identical to the
training points, and the reduced bases are not truncated. In this case, the temporal behavior of the
system is perfectly predictable, because (in exact arithmetic) the online response is the same as the
training response. Therefore, we expect the proposed method to work extremely well.

Section 4.3 assesses the method’s performance in a more challenging setting. Here, the online points
differ from the training points (i.e., a predictive scenario), so the temporal behavior is not identical to
that observed during the training simulations. The parametric inputs correspond to shape parameters
and the initial displacement. The external force is set to zero, which leads to a damped free-vibration
problem. As a result, the dynamics encountered in this example are relatively smooth.

Section 4.4 considers a more challenging predictive scenario wherein rich dynamics—generated
from a high-frequency external force—characterize the response. Here, additional parametric inputs
are considered, which correspond to the magnitudes and frequencies of the high-frequency forces.

Section 4.5 increases the predictive difficulty, as the allowable range of the parametric inputs is
doubled, leading to a more significant variation in the responses.

Finally, Section 4.6 summarizes the proposed forecasting method’s performance over all experiments
and tested reduced-order models.

4.1. Problem description
Figure 2 depicts the parameterized, non-conservative clamped–free truss structure we consider.

The truss is parameterized by q = 16 parametric inputs q ≡ (q1, . . . , q16) ∈ D = [−0.5, 0.5]
16

that
affect the geometry, initial condition, and applied force as described in Table 1. We set the material

1 m
1 m

1 m

width

height

length

force 1

force 2

force 3

force 4

x

y

z

Figure 2: Clamped–free parameterized truss structure

properties to those of aluminum, i.e., density ρ = 2700 kg/m
3

and elastic modulus E = 62 × 109 Pa.
The external force is composed of four components:

f ext(q, t) =
4∑

i=1

pi(q, t)ri, (35)
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length (m)
bar

width (m) height (m)
initial condition external-force external-force

cross-sectional max magnitude (N) magnitude frequency
area (m2) si, i = 1, . . . , 4 γi, i = 1, . . . , 4 λi, i = 1, . . . , 4

200 + 50q1 0.0025(1 + 0.5q2) 10(1 + q3) 10(1 + q4) f
i
(1 + 0.5qi+4) f

i
(1 + 0.5qi+8) 3ω0(1 + 0.5qi+12)

Table 1: Effect of parameters on truss geometry, initial conditions, and applied forces. Here, f
i
, i = 1, . . . , 4 denote

the nominal force magnitudes (specified within each experiment) and ω0 denotes the lowest-magnitude eigenvalue at the
nominal point q̄.

where ri ∈ RN , i = 1, . . . , 4 correspond to unit loads uniformly distributed across designated nodes
and pi : D × [0, T ] → R, i = 1, . . . , 4 denote the p = 4 forcing inputs. Figure 2 depicts the spatial
distribution of the forces, which lead to vectors ri, i = 1, . . . , 4 through the finite-element formulation
described below. The parameterized, time-dependent magnitudes of these forces are

pi(q, t) =

{
γi (q) sin (λi(q) (t− T/4)) , t ≥ T/4
0, otherwise

, (36)

where γi : D → R and λi : D → R, i = 1, . . . , 4 denote the maximum force magnitudes and force
frequencies, respectively. Similarly, the initial displacement is composed of four components x0 (q) =∑4
i=1 si(q)si, where si is the steady-state displacement of the truss subjected to load riγi (q̄) with

q̄ = (0, . . . , 0) denoting the nominal point in parameter space. The initial velocity is set to zero v0 = 0,
and the reference configuration is simply the undeformed truss (in equilibrium) represented by x̄ = 0.

The problem is discretized by the finite-element method. The model consists of 16 three-dimensional
bar elements per bay with three degrees of freedom per node; this results in 12 degrees of freedom
per bay. We consider a problem with 250 bays, and therefore N = 3 × 103 degrees of freedom in
the full-order model. The bar elements model geometric nonlinearity, which results in a high-order
nonlinearity in the internal force. This discretization results in the following equations of motion for
the full-order model:

M (q)ẍ+C (q)ẋ+ f int (x; q) = f ext(t; q). (37)

Here,M (q) ∈ RN×N denotes the symmetric-positive-definite mass matrix, the internal force is denoted
by f int : RN × D → RN , and the symmetric-positive-semidefinite Rayleigh viscous damping matrix,
denoted by C (q) ∈ RN×N , is of the form

C (q) = αM (q) + β∇xf int

(
x0; q

)
. (38)

Note that ∇xf int

(
x0; q

)
represents the tangent stiffness matrix at the initial condition. Here, α and

β are chosen such that the damping ratio is ζ = 15 deg for the uncoupled ODEs associated with the
smallest two eigenvalues of the matrix pencil (M(q̄),∇xf int (0; q̄)) [39].

The equations of motion (37) can be rewritten in the standard form of Eqs. (3)–(5) as

ẍ = M (q)
−1

(f ext(t; q)−C (q)ẋ− f int (x; q)) (39)

x(0,p, q) = x0 (q) (40)

ẋ(0,p, q) = v0(q). (41)

The nonlinear function defining the acceleration for the second-order ODE is then

g (x, ẋ; t,p, q) = M (q)
−1

(f ext(t; q)−C (q)ẋ− f int (x; q)) . (42)

We employ an implicit Nyström time integrator with constant timestep size h = hn, n = 1, . . . ,M
to compute the numerical solution to Eqs. (39)–(41) in the time interval [0, T ] with T = 25 seconds. In
particular, we employ the implicit midpoint rule for both partitions. This leads to discrete equations
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(B.2) to be solved at each time step with explicit updates (B.3)–(B.4) and parameters s = 1, â11 = 1/2,

ā11 = 1/4, b̂1 = 1, b̄1 = 1/2, c1 = 1/2. The unknowns are equivalent to the acceleration at the half
time steps: wn = ẍ

(
tn−1 + 1/2h

)
, n = 1, . . . ,M . Multiplying the corresponding residual by M (q)

yields

rn (wn) = M (q)wn+C (q)

[
ẋn−1 +

1

2
hwn

]
+f int

(
xn−1 +

1

2
hẋn−1 +

1

4
h2wn; q

)
−f ext(t

n−1+
1

2
h; q).

(43)
To solve rn (wn) = 0 at each time step, We employ a globalized Newton solver with a More–Thuente
linesearch [40]. Except when noted, convergence of the Newton iterations is declared when the residual
norm reaches 10−6 of its value computed using a zero acceleration and the values of the displacement
and velocity at the beginning of the timestep. The linear system arising at each Newton iteration is
solved directly.

The experiments compare the performance of three reduced-order models: Galerkin projection
(Eq. (20) with Ψ = Φ), Galerkin projection with Gappy POD residual approximation (Eq. (24)),
and a model-reduction method based that preserves the classical Lagrangian structure intrinsic to the
problem (Ref. [38], proposal 1). To construct the reduced-order models, we collect snapshots of the
required quantities for q ∈ Dtrain ⊂ D and t ∈ [0, T ]. The trial basis Φ is determined via POD. We
collect snapshots of the state

Xx = {xn−1 + hẋn−1 +
h

2
ẍn,1 | n = 1, . . . ,M ; q ∈ Dtrain} (44)

and set the trial basis to Φ = Φe (Xx, νx), where νx ∈ [0, 1] is an ‘energy criterion’ and Φe is defined
by Algorithm 2 in Appendix C. The reference state is set to x̄ = 0, as this is the equilibrium state for
this problem [38]. For Galerkin projection with least-squares (Gappy POD) residual reconstruction,
the following snapshots are collected during the (full-order model) training simulations:

Xr = {rn
(
wn(k)

)
| n = 1, . . . ,M ; k = 0, . . . ,Kn − 1; q ∈ Dtrain}. (45)

Here, Kn denotes the number of Newton steps taken at time step n. The residual basis is set to
ΦR = Φe (Xr, νr) with νr ∈ [0, 1]. For the structure-preserving method, we also collect snapshots of
both the mass matrix and the external forcing vector:

XM = {M (q) | q ∈ Dtrain} (46)

Xfext
= {f ext(t

n; q) | n = 1, . . . ,M ; q ∈ Dtrain}. (47)

The POD basis for the external force employed by the structure-preserving method is set to Φfext
=

Φe
(
Xfext

, νfext

)
with νfext

∈ [0, 1]
Reduced-order models with spatial-complexity reduction employ the same sampling matrix Z,

which is generated using GNAT’s greedy sample-mesh algorithm [4, Algorithm 3].6 These models are
also implemented using the sample-mesh concept [4, Section 5]. For the structure-preserving method
[38], we solve the reduced-basis-sparsification unconstrained optimization problem using the Poblano
toolbox [40].7

6Greedy-algorithm parameters are ΦR = ΦJ = Φe
r a POD basis computed using Algorithm 2 with snapshots of

the numerical residual over all timesteps and Newton iterations during the full-order-model training simulations and an
energy criterion of ν ← νr = 1− 10−2, a target number of sample nodes ns = nZ/ν with ν = 3 unknowns per node (the
x-, y-, and z-displacements), an empty seeded sample-node set N = ∅, and nc equal to the number of columns in Φe

r.
7The initial guess for each of these problems is chosen as ZTZΦ.
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In all experiments, the proposed forecasting method employs untruncated time-evolution bases:
aj = ntrain, j = 1, . . . , N̂ . We compare its performance with that of the most common approach
for generating an initial guess: a polynomial extrapolation of varying degree. Note that polynomial
extrapolations of different degrees employ a different number of previous solutions to generate an initial
guess; in our experiments, we associate the number of previous solutions employed with a ‘memory’
α. For example, a zeroth-order extrapolation requires the previous solution (wn(0) = wn−1), so α = 1
in this case. When no previous solution is used (i.e., α = 0), the polynomial-extrapolation approach
uses ẍn,1 = wn(0) = 0. In all experiments, the full-order model employs a zeroth-order extrapolation
for the initial guess.

The output of interest is the y-displacement of the bottom-left node of the end face of the truss
in Figure 2. We denote this (parameterized, time-dependent) quantity by d ∈ R. To quantify the
performance of the reduced-order models, the following metrics are used:

ε =

1
M

M∑
n=0
|dn − dnFOM|

max
n

dnFOM −min
n
dnFOM

(48)

κ =
K̄FOM

K̄
(49)

S =
TFOM

T
(50)

Here, error measure ε designates the scaled `1 norm of the discrepancy in the output predicted by a
reduced-order model. The temporal-complexity-reduction factor is denoted by κ, where K̄ denotes the
average number of Newton-like steps taken per time step over the course of a simulation. The speedup
is denoted by S with T denoting the wall time required for a simulation. A subscript ‘FOM’ denotes
a quantity computed using the full-order model.

All computations are carried out in Matlab on a Mac Pro with 2 × 2.93 GHz 6-Core Intel Xeon
processors and 64 GB of memory.

4.2. Ideal case: unforced, invariant inputs, no truncation of bases

This experiment explores the ideal case for the method: the online inputs equal the training inputs,
and the bases are not truncated (νx = νr = 1.0). The resulting basis dimensions are N̂ = 100 for the
reduced basis and 329 for the residual basis (i.e., Φf ∈ RN×329). In this scenario, the full-order model’s
temporal behavior encountered online is exactly the same as that observed during training simulation;
for this reason, we expect the proposed method to perform very well. We consider a single configuration
(ntrain = 1) characterized by qi = 0, i = 1, . . . , 9 with no applied forcing qi = −2, i = 9, . . . , 16. The

nominal forces that affect the initial condition (see Table 1) are set to f
1

= f
2

= 2kg × 9.81m/s
2

and

f
3

= f
4

= 0.4kg × 9.81m/s
2
. The time-step size is set to h = 0.25 seconds, leading to M = 100 total

time steps. This value was determined by a timestep-verification study using a timestep-refinement
factor of two; a timestep of 0.25 seconds led to an approximated rate of convergence in the output
quantity d at the end of the time interval of 1.40 (which is reasonably close to the scheme’s asymptotic
rate of convergence of 2.0) and an approximated error in this quantity (computed via Richardson
extrapolation) of 0.99%.

We assess the performance of the ROMs with spatial-complexity reduction (i.e., Gappy POD and
the structure-preserving ROM) using two different sets of sample indices. First, we set the number of
sample nodes equal to 20% of the total nodes in the mesh (i.e., ns = 200), which leads to nZ = 600.
We also employ a sampling fraction of 5%, which leads to nZ = 150. For the forecasting technique,
the Newton-step threshold is set to τ = 0 and the maximum memory is set to αmax = 9. For the ‘no
forecasting’ case, we employ a zeroth-order polynomial extrapolation. For experiments in this section,
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we declare the Newton iterations to have converged when the residual norm reaches 10−4 of its value
computed using a zero acceleration and the values of the displacement and velocity at the beginning
of the timestep.

The full-order-model simulation consumed 16.8 minutes and incurred 229 Newton iterations (K̄FOM =
2.29). Table 2 and Figure 3 report the results for the reduced-order models. First, note that the relative
errors generated by Galerkin and Gappy POD ROM with 20% sampling are essentially zero. This is
expected, because the reduced bases are not truncated and the inputs are fixed. Further, note that the
Galerkin ROM without forecasting generates no speedup; this is expected because it is not equipped
with a spatial-complexity-reduction technique (see Section 2.2.2). The other two techniques—which
employ spatial-complexity-reduction approximations—lead to speedups. The exception is Gappy POD
with 5% sampling, which yields an unstable response; this is depicted in Figure 3(a). For this reason,
subsequent experiments employ a larger sampling fraction for the Gappy POD ROM compared with
the structure-preserving ROM.

Importantly, note that the reduced-order models exhibit very little temporal-complexity reduc-
tion (i.e., κ ≈ 1.0) in the absence of the proposed forecasting technique. When the models employ
the proposed forecasting technique, the number of Newton iterations decreases, leading to temporal-
complexity reductions of κ = 114.5 for the Galerkin ROM and κ = 2.26 and κ = 2.25 for the best-
performing Gappy POD and structure-preserving ROMs, respectively. In turn, this leads to improved
wall-time speedups in all cases.

The Galerkin ROM case presented here can be viewed as the best possible performance for the
method (applied to this problem): the temporal behavior of the system is exactly predictable, as the
inputs have not changed, and the reduced basis has not been truncated. So, the forecast is ‘perfect’
after only one time step for the Galerkin ROM. This means that for each time step after the first one,
the initial guess generated by the forecasting method is equal to the solution at that time step, so no
Newton steps are needed to compute the solution. As a result, no Newton iterations are carried out
beyond the first time step. The next sections investigate the forecasting method’s performance in the
(more realistic) case of varying inputs and truncated bases.

Remark. Note that the speedup (2.00) of the Galerkin ROM with forecating is not nearly as significant
as the reduction factor (114.5), as Newton iterations are not the only aspect of the simulation that
contribute to computational time. For example, the solution, velocity, and acceleration are updated
at each time step, the residual is computed at each time step to check for convergence, outputs are
computed, etc. We expect these two values to align more closely for problems where the computational
cost of the Newton iterations dominates the overall simulation time.

ROM method
sampling
fraction
nZ/N

relative
error ε

No forecasting With forecasting

Newton

its K̄M
speedup

S
reduction
factor κ

Newton

its K̄M
speedup

S
reduction
factor κ

Galerkin - 8.93× 10−6 209 0.955 1.10 2 2.00 114.5

Gappy POD
0.2 1.60× 10−5 209 2.97 1.10 101 4.34 2.26
0.05 unstable - - - - - -

structure preserving
0.2 5.06× 10−2 199 3.40 1.15 107 4.27 2.14

0.05 4.98× 10−2 199 12.7 1.15 102 16.3 2.25

Table 2: Ideal case: forecast performance.

4.3. Unforced, varying inputs

We now consider a fully predictive scenario with q? 6∈ Dtrain. Again, we set the forces to zero, which
implies qi = −2, i = 9, . . . , 16. We use ntrain = 6 training points and determine Dtrain using Latin
hypercube sampling [41]. We randomly select two online points. Figure 4 depicts the tip displacement
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(a) sampling fraction nZ/N = 0.05
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(b) sampling fraction nZ/N = 0.20

Figure 3: Ideal case: Online responses for the full-order model (black, hidden), Galerkin ROM (blue) and Gappy POD
ROM (red), and structure-preserving ROM (magenta) for different sampling fractions. Note that the Gappy POD ROM
is unstable for a sampling fraction of 0.05.

for the training points. As the problem setup is the same as the previous section (except for the
parameter variation), we employ the same timestep size of h = 0.25 seconds, leading to M = 100 time
steps.
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Figure 4: Unforced, varying inputs: Full-order model responses at training points in parameter space.

To gain insight into the proposed method’s potential, Figure 5 depicts the time evolution of the first
generalized unknown ŵ1—which is one of the forecasted variables—for the online and training points.
Importantly, note that the qualitative response of this unknown is quite similar across parameter
variation, which suggests that the forecasting method has the potential to generate accurate forecasts.

To construct the reduced-order models, we employ truncation critera of νx = 1−10−5, which leads
to a basis dimension of N̂ = 8, and νr = 1 − 10−9 for Gappy POD, which results in a dimension of
316 for the residual basis. For the structure-preserving ROM, we sample 5% of the indices such that
nZ = 150; as this led to instabilities for Gappy POD, we sample 60% of the indices (i.e., nZ = 1800)
for that method.

Figure 6 reports the responses of the full-order model and all three reduced-order models. The
full-order-model simulation required 18.5 minutes and 307 total Newton iterations (K̄FOM = 3.07) for
online point q?,1 and 20.4 minutes and 347 Newton iterations (K̄FOM = 3.47) for online point q?,2.
Note that the reduced-order models are very accurate at the prediction points. At online point q?,1,
they generate relative errors ε of 3.33× 10−2 (Galerkin), 2.56× 10−2 (Gappy POD), and 4.66× 10−2

(structure preserving). At online point q?,2, the relative errors are 3.48× 10−2 (Galerkin), 4.07× 10−2
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Figure 5: Unforced, varying inputs: First generalized unknown at online point (bold curve) and training points (thin
curves).

(Gappy POD), and 2.45× 10−2 (structure preserving).8
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Figure 6: Unforced, varying inputs: Online responses for the full-order model (black), Galerkin ROM (blue), Gappy
POD ROM (red), and structure-preserving ROM (magenta).

Figure 7 reports the Newton-iteration and wall-time performance of the reduced-order models for
different forecasting strategies at the two online points. First, note that the proposed forecasting
method always yields better performance than polynomial extrapolation, regardless of the values for
the forecasting parameters or polynomial degree. Second, observe that the performance of the pro-
posed forecasting method is relatively insensitive to its parameters τ and αmax. Also, note that adding
‘memory’ to the polynomial extrapolation forecast—which yields a higher-degree extrapolant—is al-
most always deleterious to its performance. In addition, improvement in wall-time speedup provided
by the forecasting technique is not as strong as the improvement in number of Newton iterations.
This can be attributed to the presence of other operations (e.g., solution updating, residual computa-

8Different initial guesses for the Newton solver lead to (slightly) different computed responses. Thus, the ROM
responses in principle depend on the forecasting method. However, the resulting differences in errors were negligible
in these experiments; therefore, we only report the ROM error generated by an initial guess of zero (i.e., polynomial
forecast, α = 0 in Figure 6).
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tion to check for convergence) that contribute to the simulation time (see the remark in Section 4.2).
Finally, observe that the speedups generated by the structure-preserving method are far superior to
those generated by Galerkin and Gappy POD. This is due to the fact that the structure-preserving
method employed only nZ = 150, whereas Galerkin is not equipped with a spatial-complexity-reduction
mechanism and Gappy POD required nZ = 1800 to generate a stable response.

4.4. Forced, varying inputs

In this section, we activate the external forcing, thereby allowing qi ∈ [−0.5, 0.5], i = 1, . . . , 16.
The timestep was again set to h = 0.25 seconds, leading to M = 100 time steps. This value was
again determined by a timestep-verification study at the nominal configuration q̄ using a refinement
factor of two. The approximated rate of convergence in the output quantity at the end of the time
interval for this timestep size was determined to be 1.67 (close to the asymptotic value of 2.0), and
the error in this quantity as approximated by Richardson extrapolation was 1.33%. As before, we
used Latin hypercube sampling to determine the ntrain = 6 training points; Figure 8(a) reports the
full-order-model responses at these points. Note that parameter variation leads to significant changes
in the response. We randomly select two online points at which we will perform prediction with the
ROMs.

Figure 9 depicts the time evolution of the first generalized unknown ŵ1 for the online and training
points. As before, there is qualitative similarity of this forecasted variable for the different points; this
suggests the forecasting method can again realize computational savings. Also, note that the character
of the response changes appreciably when the external force is activated at t = 6.25 seconds.

The reduced-order models employ trunction critera of νx = 1− 10−6 (basis dimension of N̂ = 16)
and a residual-basis dimension of 1800. The structure-preserving method approximates the external
force via Gappy POD (see Ref. [38]); for this purpose, it employs a truncation criterion of νfext

= 1,
leading to a basis dimension of 4.9 Again, the Gappy POD ROM employs a sampling rate of 60%
(nZ = 1800) and the structure-preserving ROM employs a samping percentage of 5% (nZ = 150).10

Figure 10 reports the responses of the full-order model and the reduced-order models at the online
prediction points. The full-order model consumed 20.3 minutes and 330 Newton iterations (K̄FOM =
3.3) at online point q?,1 and 22.6 minutes and 360 Newton iterations (K̄FOM = 3.6) at point q?,2.
The relative errors ε of the ROMs at online point q?,1 are 1.56× 10−2 (Galerkin), 1.56× 10−1 (Gappy
POD), and 5.78 × 10−2 (structure-preserving). For online point q?,2, the errors are 2.41 × 10−2

(Galerkin), 1.68×10−1 (Gappy POD), and 3.05×10−2 (structure-preserving). Note that the Galerkin
and structure-preserving ROMs are quite accurate, but the Gappy POD ROM incurs significant errors.

Figure 11 reports the Newton-iteration and wall-time performance of the ROMs for different fore-
casting strategies. The results are very similar to those for the unforced case: the proposed forecasting
method nearly always exhibits performance superior to that of polynomial extrapolation, the proposed
method is relatively insensitive to the parameters τ and αmax, and high-order polynomial extrapolation
performs very poorly. In addition, improvement in iteration-reduction factor κ exceeds the improve-
ment in speedup S, and the structure-preserving method generates the largest speedups due to the
fact it employs the smallest number of sample indices. Additionally, notice the ‘missing’ data points
for polynomial extrapolation with αmax = 12 and αmax = 15 for the Gappy POD ROM; these miss-
ing data indicate that the Gappy POD ROM did not converge for these forecasts. This implies that
the initial guesses were so poor that the globalized Newton method failed to generate an acceptable
solution within the alloted 500 Newton iterations at least one time step.

Also, note that employing τ = 0 appears to systematically outperform τ = 1 in terms of the
iteration-reduction factor κ metric. However, this does not always lead to an improvement in speedup

9Note that the external force is composed of only four linearly independent components ri, i = 1, . . . , 4 (see Eq. (35)).
10The Gappy POD ROM was unstable for nZ = 150.
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Figure 7: Unforced, varying inputs: Performance of the forecasting method. The proposed forecasting method decreases
both the number of requried Newton iterations and simulation time compared with polynomial extrapolation in nearly
all cases.
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Figure 8: Forced, varying inputs: Full-order model responses at training points in parameter space. Note that larger
parameter variation leads to larger parameter-induced changes in the output.
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ŵ

1

time
0 5 10 15 20 25

−60

−50

−40

−30

−20

−10

0

10

20

(b) online point q?,2

Figure 9: Forced, varying inputs: First generalized unknown at online point (bold curve) and training points (thin
curves).
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Figure 10: Forced, varying inputs: Online responses for the full-order model (black), Galerkin ROM (blue), Gappy POD
ROM (red), and structure-preserving ROM (magenta).
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(see the structure-preserving ROM for q?,1). This can be attributed to the fact that employing τ = 0
results in more frequent forecast recomputation (i.e., whenever the number of Newton iterations exceeds
zero) than the τ = 1 case.

These results highlight that the proposed forecasting method is applicable even for the more chal-
lenging problem of parameterized forced responses.

4.5. Forced, varying inputs, larger parameter variation.

In this section, we assess the performance of the method for the same problem as Section 4.4, but
with an increased parameter variation, i.e., D = [−1, 1]

16
. This poses a greater challenge for both the

reduced-order models and the forecasting method, as they now rely on training data from the same
number of points (we keep ntrain = 6) in a larger parameter domain. As the model now undergoes
larger parameter variation, we decrease the timestep size to h = 0.1 seconds, leading to M = 250
total time steps.11 Note that this timestep remains in the asymptotic range of convergence for the
nominal configuration q̄, as it is smaller than the previously verified value of 0.25 seconds. Again,
training points are chosen by Latin hypercube sampling, and the online points are selected randomly.
Figure 8(b) reports the full-order-model responses at the training points; note that the changes in the
response are in fact more significant than for the previous case with smaller parameter variation.

Figure 12 again reports the time evolution of the first generalized unknown. Note that again there
is similar qualitative structure across parameter variation.

The attributes for the reduced-order models are the same as in Section 4.4, with one exception: a
criterion of νx = 1−10−4 is employed for the state, which associates with a basis dimension of N̂ = 10.
Note that basis dimension is larger than in the previous case.

Figure 13 depicts the full-order-model response along with those for the reduced-order models.
The full-order model took 36.7 minutes and 605 Newton iterations (K̄FOM = 2.42) at online point q?,1

and 37.3 minutes and 595 Newton iterations (K̄FOM = 2.38) at point q?,2. As before, the Galerkin
and structure-preserving ROMs are more accurate than the Gappy POD ROMs. The relative errors
ε at point q?,1 are 4.19 × 10−2 (Galerkin), 1.29 × 10−1 (Gappy POD), and 3.65 × 10−2 (structure
preserving). At online point q?,2, the associated errors are 6.91×10−2 (Galerkin), 1.73×10−1 (Gappy
POD), and 5.67× 10−2 (structure preserving).

Figure 14 reports the Newton-iteration and wall-time results for the different forecasting strategies.
Note that the results are extremely similar to those in Section 4.4. The primary exception can be
seen by comparing Figure 14 with 11: the iteration-reduction factor κ and speedup S performance of
the reduced-order models has decreased. This can be attributed to the challenge of larger parameter
variation, as the ROMs are now responsible for capturing a wider range of physics.

From this set of experiments, we conclude that the proposed technique can improve ROM perfor-
mance even for problems with relatively large parameter variation.

4.6. Average performance

Finally, we summarize the performance of the forecasting techniques over the complete set of
experiments. Figure 15 reports average, minimum, and maximum values of the reduction-factor im-
provement k, and speedup improvement s over all experiments (i.e., all three experiments in Sections
4.3–4.5, all three reduced-order models, and both online points q?,1 and q?,2). Here, k = κ/κno and
s = S/Sno can each be computed for a given ROM simulation; a subscript ‘no’ indicates the value of
the variable for a zero initial guess (i.e., polynomial extrapolation with α = 0). First, note that the
proposed method always outperforms polynomial forecasting in the mean, maximum, and minimum
achieved performance for both reduction-factor improvement k and speedup improvement s. Secondly,

11The full-order model did not converge for several of the training points when h = 0.25 seconds was employed.
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Figure 11: Forced, varying inputs: Performance of the forecasting method. For all reduced-order models, the pro-
posed forecasting method decreases both the number of requried Newton iterations and simulation time compared with
polynomial extrapolation.
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Figure 12: Forced, varying inputs, larger parameter variation: Parameter dependence of the first generalized coordinate.
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Figure 13: Forced, varying inputs, larger parameter variation: Online responses for the full-order model (black), Galerkin
ROM (blue), Gappy POD ROM (red), and structure-preserving ROM (magenta)..
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Figure 14: Forced, varying inputs, larger parameter variation: Performance of the forecasting method. For all reduced-
order models, the proposed forecasting method decreases both the number of required Newton iterations and simulation
time compared with polynomial extrapolation.
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the maximum, minimum, and average performance of polynomial forecasting were all made worse by
increasing the polynomial degree.

Finally, the best average performance was achieved for a forecast memory of αmax = 9 and Newton-
iteration criterion of τ = 0. In this case, the iteration-reduction factor was increased by 63% on average;
the speedup was improved by 22% on average. Critically, note that these temporal-complexity gains
incur no additional error, and so they strictly serve to improve the performance of the ROMs with no
penalty.
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Figure 15: Performance of forecasting methods quantified over all reduced-order models, problems, and online prediction
points. The mean (solid line), maximum (dashed line), and minimum (dotted) are reported.

5. Conclusions

This paper has described a method for decreasing the temporal complexity of nonlinear reduced-
order models in the case of implicit time integration. The method exploits knowledge of the dynamical
system’s temporal behavior in the form of ‘time-evolution bases’; one such basis is generated for each
generalized coordinate of the time integrator’s unknown during the (offline) training stage. During the
(online) deployed stage, these time-evolution bases are used—along with the solution at recent time
steps—to forecast the unknown at future time steps via Gappy POD. If this forecast is accurate, the
Newton-like solver will converge in very few iterations, leading to computational-cost savings.

Numerical experiments demonstrated the potential of the method to significantly improve the
performance of nonlinear reduced-order models, even in the presence of high-frequency content in
the dynamics. The experiments also demonstrated the effect of input parameters on the method’s
performance, and provided a parameter study to analyze the effect of the method’s parameters.

Future work includes devising a way to directly handle frequency and phase shifts in the response,
as well as time-shifted temporal behavior.
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Appendix A. Implicit time-integration schemes: first-order ODEs

For notational simplicity, consider a system without parametric inputs q, and define f̄(x, t) ≡
f (x; t,p (t)) such that

ẋ = f̄ (x, t) . (A.1)

Further, denote by h the time-step size at time step n.

Appendix A.1. Implicit linear multi-step schemes

A linear k-step method applied to first-order ODEs can be expressed as

k∑

j=0

αjx
n−j = h

k∑

j=0

βj f̄
(
xn−j , tn−j

)
, (A.2)

where α0 6= 0 and
k∑
j=0

αj = 0 is necessary for consistency. These methods are implicit if β0 6= 0. In

this case, the form of the residual is

rn (wn) = α0w
n − hβ0f̄(wn, tn) +

k∑

j=1

αjx
n−j − h

k∑

j=1

βj f̄
(
xn−j , tn−j

)
(A.3)

and the explicit state update is simply
xn = wn. (A.4)

Therefore, the unknown is the state at time tn.

Appendix A.2. Implicit Runge–Kutta schemes

For an s-stage Runge–Kutta scheme, the form of the residual is

rni
(
wn,1, . . . ,wn,s

)
= wn,i − f̄(xn−1 + h

s∑

j=1

aijw
n,i, tn−1 + cih), i = 1, . . . , s (A.5)

with the following explicit computation of the state:

xn = xn−1 + h
s∑

i=1

biw
n,i. (A.6)

The unknowns correspond to the velocity ẋ at times tn−1 + cih, i = 1, . . . , s.

Appendix B. Implicit time-integration schemes: second-order ODEs

For notational simplicity, consider a second-order differential equations without parametric inputs
q and define ḡ (x, ẋ, t) ≡ g (x, ẋ; t, p(t)) such that

ẍ = ḡ (x, ẋ, t) . (B.1)

27



Appendix B.1. Implicit Nyström method

Nyström methods are partitioned Runge–Kutta schemes applied to second-order ODEs. They lead
to the following representation for the residuals:

rni
(
wn,1, . . . ,wn,s

)
=wn,i−

ḡ


xn−1 + cihẋ

n−1 + h2
s∑

j=1

āijw
n,i, ẋn−1 + h

s∑

j=1

âijw
n,i, tn−1 + cih


 ,

(B.2)

i = 1, . . . , s. The state and velocity are updated explicitly as

xn = xn−1 + hẋn−1 + h2
s∑

i=1

b̄iw
n,i (B.3)

ẋn = ẋn−1 + h
s∑

i=1

b̂iw
n,i. (B.4)

The unknowns correspond to the acceleration ẍ at times tn−1 + cih, i = 1, . . . , s.

Appendix B.2. Implicit Newmark method

The implicit Newmark method leads to the following residuals:

rn(wn) = wn − ḡ
(
xn−1 + hẋn−1 +

h2

2

[
(1− 2β) ẍn−1 + 2βwn

]
, ẋn−1 + h

[
(1− γ) ẍn−1 + γwn

]
, tn
)

(B.5)

The state and velocity are explicitly updated as

xn = xn−1 + hẋn−1 +
h2

2

[
(1− 2β) ẍn−1 + 2βwn

]
(B.6)

ẋn = ẋn−1 + h
[
(1− γ) ẍn−1 + γwn

]
. (B.7)

Here, the unknown corresponds to the acceleration ẍ at time tn.

Appendix C. Proper orthogonal decomposition

Algorithm 2 describes the method for computing a proper-orthogonal-decomposition (POD) basis
given a set of snapshots. The method essentially amounts to computing the singular value decompo-
sition of the snapshot matrix. The left singular vectors define the POD basis.
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Chapter 3

Adaptive h-refinement for reduced-order
models

This chapter presents a method for adaptively refining projection-based reduced-order models a
posteriori using a goal-oriented framework inspired by mesh-adaptive h-refinement. The technique
allows reduced-order models to generate arbitrarily accurate answers (at the cost of an adaptively-
increased basis dimension), which allows it to capture physical phenomena not present in the
training data. Thus, the proposed technique acts as a ‘failsafe’ mechanism. This work has been
accepted for publication in the International Journal for Numerical Methods in Engineering. It is
in press at the time of this writing.
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Adaptive h-refinement for reduced-order models

Kevin Carlberg∗
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Abstract

This work presents a method to adaptively refine reduced-order models a posteriori without requiring ad-
ditional full-order-model solves. The technique is analogous to mesh-adaptive h-refinement: it enriches the
reduced-basis space online by ‘splitting’ a given basis vector into several vectors with disjoint support. The
splitting scheme is defined by a tree structure constructed offline via recursive k-means clustering of the
state variables using snapshot data. The method identifies the vectors to split online using a dual-weighted-
residual approach that aims to reduce error in an output quantity of interest. The resulting method generates
a hierarchy of subspaces online without requiring large-scale operations or full-order-model solves. Further,
it enables the reduced-order model to satisfy any prescribed error tolerance regardless of its original fidelity,
as a completely refined reduced-order model is mathematically equivalent to the original full-order model.
Experiments on a parameterized inviscid Burgers equation highlight the ability of the method to capture
phenomena (e.g., moving shocks) not contained in the span of the original reduced basis.

Keywords: adaptive refinement, h-refinement, model reduction, dual-weighted residual, adjoint error
estimation, clustering

1. Introduction

Modeling and simulation of parameterized systems has become an essential tool across a wide range of
industries. However, the computational cost of executing high-fidelity large-scale simulations is infeasibly
high for many time-critical applications. In particular, many-query scenarios (e.g., sampling for solving
statistical inverse problems) can require thousands of simulations corresponding to different input-parameter
instances of the system; real-time contexts (e.g., model predictive control) require simulations to execute in
mere seconds.

Reduced-order models (ROMs) have been developed to mitigate this computational bottleneck. First,
they execute an ‘offline’ stage during which computationally expensive training tasks (e.g., evaluating the
high-fidelity model at several points in the input-parameter space) compute a representative low-dimensional
reduced basis for the system state. Then, during the inexpensive ‘online’ stage, these methods quickly com-
pute approximate solutions for arbitrary points in the input space via a projection process of the high-fidelity
full-order-model (FOM) equations onto the low-dimensional subspace spanned by the reduced basis. They
also introduce other approximations in the presence of general (i.e., not low-order polynomial) nonlinearities.
See Ref. [1] and references within for a survey of current methods.

While reduced-order models almost always generate fast online predictions, there is no guarantee that
they will generate sufficiently accurate online predictions. In fact, the accuracy of online predictions is
predicated on the relevance of the training data to the online problem: if a physical phenomenon was not
observed during the offline stage, then this feature will be missing from online predictions. In general, the
most one can guarantee a priori is that the ROM solution error is bounded by a prescribed scalar over a
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finite set of ‘training points’ in the input-parameter space [2]. While reduced-order models can be accurate
at online points contained within a reasonable neighborhood of these training points (see, e.g., Ref. [3]), they
are generally inaccurate for points far outside this set.

This lack of error control1 precludes ROMs from being employed in many contexts. For example, PDE-
constrained optimization requires the solution to satisfy a prescribed forcing sequence to guarantee conver-
gence [4]. In uncertainty quantification, if the epistemic uncertainty due to the ROM solution error dominates
other sources of uncertainty, the ROM cannot be exploited in a useful manner. When simulating parameter-
ized highly nonlinear dynamical systems, it is unlikely that any amount of training will fully encapsulate the
range of complex phenomena that can be encountered online; such problems require an efficient refinement
mechanism to generate accurate ROM predictions.

A few methods exist to improve a ROM solution when it is detected to be inaccurate; however, they
entail large-scale operation counts. The most common approach is to revert to the high-fidelity model,
solve the associated high-dimensional equations for the current time step or optimization iteration, add
the solution to the reduced basis, and proceed with the enriched reduced-order model [5, 6, 7]. Another
approach adaptively improves the reduced-order model a posteriori by generating a Krylov subspace [8];
here, the reduced-order model serves to accelerate the full-order solve to any specified tolerance. As our goal
is to improve the reduced-order model efficiently, i.e., without incurring large-scale operations, none of these
methods is appropriate.

Instead, this work proposes a novel approach inspired by mesh-adaptive h-refinement. The main idea
is to adaptively refine an inaccurate ROM online by ‘splitting’ selected reduced basis vectors into multiple
vectors with disjoint discrete support. This splitting technique is defined by a tree structure generated offline
by applying k-means clustering to the state variables. The method uses a dual-weighted residual approach
to select vectors to split online. The resulting method generates a hierarchy of subspaces online without
requiring any large-scale operations or high-fidelity solves. Most importantly, the methodology acts as a
‘failsafe’ mechanism for the ROM: h-adaptivity enables the ROM to satisfy any prescribed error tolerance
online, as a fully refined ROM is mathematically equivalent to the original full-order model under modest
conditions.

As a final note, some ‘adaptive’ methods exist to tailor the ROM to specific regions of the input space
[9, 10, 11, 12, 13, 14], time domain [13, 15], and state space [16, 14]. However, these methods are primarily
a priori adaptive: they construct separate ROMs for each region offline with the goal of reducing the ROM
dimension. While they can be used to improve the ROM a posteriori, e.g., by restarting the greedy algorithm
online, doing so incurs additional full-order-model solves, which is what we aim to avoid.

In the remainder of this paper, matrices are denoted by capitalized bold letters, vectors by lowercase
bold letters, scalars by lowercase letters, and sets by capitalized letters. The columns of a matrix A ∈ Rm×k
are denoted by ai ∈ Rm, i ∈ N(k) with N(a) := {1, . . . , a} such that A := [a1 · · · ak]. The scalar-valued

matrix elements are denoted by aij ∈ R such that aj := [a1j · · · amj ]T , j ∈ N(k).

2. Problem formulation

2.1. Full-order model

Consider solving a parameterized sequence of systems of equations

r̃k(xk;µ) = 0 (1)

for k ∈ N(t), where xk ∈ Rn denotes the state at iteration k, µ ∈ D ⊂ Rnµ denotes the input parameters
(e.g., boundary conditions), r̃k : Rn ×Rnµ → Rn denotes the residual operator at iteration k, and t denotes
maximum number of iterations. This formulation is quite general, as it describes, e.g., parameterized systems
of linear equations (t = 1, r̃ : (x;µ) 7→ b(µ) − A(µ)x) such as those arising from the finite-element
discretization of elliptic PDEs, and parameterized ODEs ẋ = f(x;µ) after time discretization by an implicit
linear multistep method (e.g., r̃k : (xk;µ) 7→ xk −xk−1−∆tf

(
xk;µ

)
for the backward Euler scheme) such

1Note that reduced-order-model error bounds—which exist for many problems—serve to quantify the error, while error
control implies reducing this error a posteriori.
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as those arising from the space- and time-discretization of parabolic and hyperbolic PDEs. Assume that we
are primarily interested in computing outputs

zk = g(xk;µ) (2)

with zk ∈ R and g : Rn × Rnµ → R.
When the dimension n is ‘large’, computing the outputs of interest zk by first solving Eq. (1) and

subsequently computing outputs via Eq. (2) can be prohibitively expensive. This is particularly true for
many-query (e.g., statistical inversion) and real-time (e.g., model-predictive control) problems that demand
a fast evaluation of the input–output map µ 7→ {z1, . . . , zt}.

2.2. Reduced-order model

Model-reduction techniques aim to reduce the burden of solving Eq. (1) by employing a projection pro-
cess. First, they execute a computationally expensive offline stage (e.g., solving Eq. (1) for a training set
µ ∈ Dtrain ⊂ D) to construct 1) a low-dimensional trial basis (in matrix form) V ∈ Rn×p with p � n that
(hopefully) captures the behavior of the state x throughout the parameter domain D, and 2) an associated
test basis W ∈ Rn×p. Then, during the computationally inexpensive online stage, these methods approxi-
mately solve Eq. (2) for arbitrary µ ∈ D by searching for solutions in the trial subspace x̄+ range (V ) ⊂ Rn
(with x̄ ∈ Rn a chosen reference configuration) and enforcing the residual r̃k to be orthogonal to the test
subspace range (W ) ⊂ Rn:

W T r̃k(x̄+ V x̂k;µ) = 0. (3)

Here, x̂k ∈ Rp denotes the generalized coordinates of the reduced-order-model solution x̄+V x̂k at iteration k.
When the residual operator exhibits general nonlinear dependence on the state or is non-affine in the inputs,
additional complexity-reduction approximations such as empirical interpolation [17], collocation [18, 19, 7],
discrete empirical interpolation [20, 21], or gappy proper orthogonal decomposition (POD) [19, 22] are
required to ensure that computing the low-dimensional residual W T r̃k incurs an n-independent operation
count. For simplicity, we do not consider such approximations in the present work; future work will entail
extending the proposed method to such ‘hyper-reduced’ order models.

In many cases, the test basis can be expressed as W = An (x;µ)V . For example, An (x;µ) = I for
Galerkin projection; balanced truncation uses An (x;µ) = Q, where Q is the observability Gramian of the
linear time-invariant system; the least-squares Petrov–Galerkin projection [18, 22] underlying the GNAT
method employs An (x;µ) = ∂r̃k/∂x (x,µ); for linearized compressible-flow problems, An (x;µ) can be
chosen to guarantee stability [23]. When this holds, the Petrov–Galerkin projection (3) is equivalent to a

Galerkin projection performed on the modified residual rk := An (x;µ)
T
r̃k:

V Trk(x̄+ V x̂k;µ) = 0, (4)

for k ∈ N(p). In the remainder of this paper, Eq. (4) will be considered the governing equations for the
reduced-order model.

2.3. Objective: adaptive refinement

The goal of this work is as follows: given a reduced basis V and online ROM solution x̂k to Eq. (4) for
iteration k, 1) detect if the solution is sufficiently accurate, 2) if it is not sufficiently accurate, efficiently
generate a higher-dimensional reduced basis V ′ with range (V ) ⊆ range (V ′) in a goal-oriented manner that
aims to reduce errors in the output zk, 3) compute an associated solution x̂′k, 4) repeat until desired accuracy
is reached.

To generate this hierarchy of subspaces efficiently, we propose an analogue to adaptive h-refinement,
wherein selected basis vectors vi are ‘split’ online into multiple vectors with disjoint support (i.e., the
element set with nonzero entries). Like all h-refinement techniques, the proposed method consists of the
following components:

1. Refinement mechanism. In typical h-refinement, this is defined by the mesh-refinement method applied
to finite elements or volumes. The proposed method refines the solution space by splitting the support
of the basis vectors using a tree structure constructed via k-means clustering of the state variables.
Section 3 describes this component.
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2. Error indicators. Goal-oriented methods for h-refinement often 1) solve a coarse dual problem, 2)
prolongate the adjoint solution to a representation on the fine grid, and 3) compute error estimates
of the output using first-order analysis. The proposed method employs an analogous goal-oriented
dual-weighted residual approach. Section 4 presents this.

3. An adaptive algorithm. The proposed algorithm identifies when refinement is required online and
employs error indicators decide on the particular refinement, i.e., which basis vectors should be refined,
and how they should be refined. Section 5 provides this algorithm.

3. Refinement mechanism

The method assumes that an initial reduced basis V (0) ∈ Rn×p(0) is provided, which is subsequently
‘split’ to add fidelity to the ROM online. Section 3.1 describes the tree data structure that constitutes the
splitting mechanism, Section 3.2 describes how this mechanism leads to an algebraic refinement strategy,
Section 3.3 highlight critical properties of the refinement method, and Section 3.4 describes construction of
the tree via k-means clustering.

3.1. Tree data structure

To begin, we define a tree data structure that characterizes the refinement mechanism. The tree is
characterized by a child function C : N(m) → P (N(m)) that describes the topology of the tree and an
element function E : N(m)→ P (N(n)) that describes the set of nonzero vector entries associated with each
tree node. Here, m denotes the number of nodes in the tree and P denotes the powerset.

Each basis vector vi, i ∈ N(p) is characterized by a particular node on the tree di ∈ N(m), a set of nonzero
entries (i.e., support) E (di), and possible splits C (di). If a given vector vi is split, then it is replaced in
the basis by qi := card (C (di)) child vectors whose set of nonzero entries is defined by E (k), k ∈ C (di); the
values of these nonzero entries are the same as those of the original vector vi.

We enforce the following conditions for the tree:

1. The root node includes all elements: E (1) = N(n), which is consistent with the possibly global support
of the original reduced basis V (0).

2. The children have disjoint support, and the union of their support equals that of the parent: For all
i ∈ N(m),

E (j) ∩ E (k) = ∅, ∀j, k ∈ C (i), j 6= k (5)

∪
j∈C(i)

E (j) = E (i) . (6)

3. Each element is associated with a single leaf node:

∀l ∈ N(n), ∃i ∈ N(m) | E (i) = l, C (i) = ∅. (7)

As will be shown, these requirements guarantee several critical properties of the method.

Example. Consider an example with n = 6 and an initial reduced basis V (0) = v
(0)
1 of dimension 1. Figure

1 depicts an example of a tree structure for this case.
Suppose the basis has been split into p = 4 according to the tree in Figure 1 with d1 = 2, d2 = 7, d3 = 9,

and d4 = 10; then, the refined reduced basis is

V =




v
(0)
11 0 0 0

0 v
(0)
21 0 0

v
(0)
31 0 0 0

v
(0)
41 0 0 0

0 0 v
(0)
51 0

0 0 0 v
(0)
61




. (8)

�
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d = 1
C (1) = {2, 3}

E (1) = {1, . . . , 6}
d = 2

C (2) = {4, 5, 6}
E (2) = {1, 3, 4}

d = 4
C (4) = ∅
E (4) = {1}

d = 5
C (5) = ∅
E (5) = {3}

d = 6
C (6) = ∅
E (6) = {4}

d = 3
C (3) = {7, 8}
E (3) = {2, 5, 6}

d = 7
C (7) = ∅
E (7) = {2}

d = 8
C (8) = {9, 10}
E (8) = {5, 6}

d = 9
C (9) = ∅
E (9) = {5}

d = 10
C (10) = ∅
E (10) = {6}

Figure 1: Tree example with n = 6

In the sequel, we overload the child function for the two-argument case such that C (i, j) denotes the jth
child node of parent node i, where ordering of the children is implied by the binary relation ≤ on the natural
numbers. Similarly, the overloaded element function E (i, j) is the jth element for node i; again, ordering of
the elements is implied by the relation ≤ on the natural numbers.

3.2. Refinement via basis splitting

We now put the basis-splitting methodology in the framework of typical h-refinement techniques. First,

define a ‘coarse’ basis V H ∈ Rn×p, which is initially equal to the nominal basis V (0) ∈ Rn×p(0) with p(0) ≤ p.
As this initial basis may have global support, it is characterized by di = 1, i ∈ N(p(0)); this is permissible
due to Condition 1 of Section 3.1. Also define a ‘fine’ basis corresponding to the coarse basis with all vectors
split according to the children of the current node. We can express the relationship between the coarse and
fine bases as

V H = V hIhH , (9)

where V h ∈ Rn×q with q ≥ p denotes the fine basis and IhH ∈ {0, 1}q×p denotes the prolongation operator.
Then, for any generalized coordinates ŵH ∈ Rp associated with the coarse basis V H , we can compute the
corresponding fine representation ŵh ∈ Rq associated with the fine basis V h as

ŵh
H = IhHŵ

H , (10)

which ensures that V HŵH = V hŵh
H . Note this prolongation operator is exact, unlike typical mesh-

refinement strategies, where this operator is often defined as a linear or quadratic interpolant of the coarse
solution on the fine grid. The restriction operator is not uniquely defined, but can be set, e.g., to

IHh =
(
IhH
)+
, (11)

where the superscript + denotes the Moore–Penrose pseudoinverse.
Using the tree structure defined in Section 3.1, we can precisely define these quantities. We first introduce

the mapping f : (i, j) 7→ k, which provides the fine basis-vector index k corresponding to the jth child of the
ith coarse basis vector. We define it as

f (i, j) =
∑

k<i

qk + j, j ∈ N(qi), i ∈ N(p). (12)

In particular, note that if node di is a leaf (i.e., C (di) = ∅), then f (i, j) does not exist for any j. Similarly,
the inverse mapping f−1 : k 7→ (i, j) yields the coarse basis-vector index i and child index j corresponding
to fine basis vector k.
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Now, the number of vectors in the fine reduced basis is simply

q =

p∑

i=1

qi. (13)

From Condition 2 of Section 3.1, we can write the fine reduced basis as

vhij =

{
vHil , ∃k | j = f (l, k) , i ∈ E (C (dl, k))

0, otherwise.
(14)

and the prolongation operator induced by the proposed splitting scheme as

[IhH ]ij =

{
1, ∃k | i = f (j, k)

0, otherwise.
(15)

3.3. Properties

This section highlights several key properties of this refinement method.

Lemma 1 (Hierarchical subspaces). The method generates a hierarchy of subspaces such that range
(
V H

)
⊆

range
(
V h
)
.

Proof This result is self-evident from Eq. (9), as

range
(
V H

)
= {V hw | w ∈ range

(
IhH
)
⊆ Rq} ⊆ {V hw | w ∈ Rq} = range

(
V h
)
. (16)

Theorem 1 (Monotonic convergence). If the reduced-order model (4) is a priori convergent, i.e., its
solution satisfies

V x̂k = arg min
w∈range(V )

‖xk − x̄−w‖Θ, (17)

for some norm ‖·‖Θ, then the proposed refinement method guarantees monotonic convergence of the reduced-
order-model solution, i.e.,

‖xk − x̄− V h(x̂h)k‖Θ ≤ ‖xk − x̄− V H(x̂H)k‖Θ. (18)

Proof This follows directly from Lemma 1, as the coarse-basis solution is contained in the span of the fine
basis V H(x̂H)k ∈ range

(
V H

)
⊆ range

(
V h
)
.

One example of a reduced-order model that satisfies the conditions of Theorem 1 arises when the residual is
linear in the state and its Jacobian ∂rk/∂x (µ) is symmetric and positive definite. In this case, a Galerkin-
projection ROM satisfies Eq. (17) for Θ = ∂rk/∂x (µ) with ‖w‖∂rk/∂x(µ) :=

√
wT∂rk/∂x (µ)w. Another

example is least-squares Petrov–Galerkin applied to a parametrized system of linear equations [22], where

Θ =
(
∂rk/∂x (µ)

)T
∂rk/∂x (µ).

Theorem 2 (Convergence to the full-order model). If every element has a nonzero entry in one of
the original reduced-basis vectors, i.e.,

∀l ∈ N(n), ∃ (i, j) ∈ N(n)× N(p(0)) | v(0)
ij 6= 0, (19)

and Eq. (7) holds, then a completely split basis yields a reduced-order model equivalent to the full-order model.

Proof Under these conditions, a completely split basis can be written as V ∈ Rn×np(0) with all basis vectors
in the leaf-node state, i.e., C (di) = ∅, i ∈ N(np(0)). Because Eq. (7) guarantees that each element is
associated with a single leaf node, this implies that

∀l ∈ N(n), ∃ i ∈ N(np(0)) | vi = elβi, (20)
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where el ∈ {0, 1}n denotes the lth canonical unit vector and βi 6= 0, i ∈ N(np(0)). Eq. (20) implies that the
completely split basis can be post-multiplied by a (weighted) permutation matrix to yield the n × n identity
matrix In, i.e.,

In = V Γ. (21)

Here, the matrix Γ ∈ Rnp(0)×n consists of columns

γl =
1

βi
ei, i ∈ {j | vj = elβj}, l ∈ N(n). (22)

Eq. (21) implies that
range (In) = Rn ⊆ range (V ) ⊆ Rn, (23)

which completes the proof.

Lemma 1 and Theorem 2 show that the proposed refinement method enables the reduced-order model to gen-
erate a sequence of hierarchical subspaces that converges to the full-order model under modest assumptions.
Thus, the method acts as a ‘failsafe’ mechanism: it allows the reduced-order model to generate arbitrarily
accurate solutions. Despite this result, the associated rate of convergence is unknown, which precludes any a
priori guarantee that the h-adaptive ROM will remain truly low dimensional for stringent accuracy require-
ments. However, numerical experiments in Section 6 demonstrate that the proposed method often leads to
accurate responses with low-dimensional refined bases.

Remark. Note that the refinement method does not preclude a rank-deficient basis; this can be seen from
Theorem 2, wherein a completely split basis has np(0) ≥ n columns. To detect (and remove) rank defi-
ciency, the refinement algorithm computes a rank-revealing QR factorization after each split (Steps 14–15 of
Algorithm 4 and Steps 28–29 of Algorithm 5). �

3.4. Tree construction via k-means clustering of the state variables

Any tree that satisfies Conditions 1–3 of Section 3.1 will lead to the critical properties proved in Section
3.3. This section presents one such tree-construction approach, which executes offline and employs the
following heuristic:

State variables xi that tend to be strongly positively or negatively correlated can be accurately
represented by the same generalized coordinate, and should therefore reside in the same tree
node.

Example. To justify this heuristic, consider an example with n = 6 degrees of freedom and no = 8 ob-
servations of the state, e.g., from a computed time history. Assume that snapshots can be decomposed
as

X =
3∑

i=1

yiz
T
i + 0.1E (24)

where E ∈ [−1, 1]
n×no is a matrix of random uniformly distributed noise and the data matrices are

Z =



−2.2083 −5.1072 2.6816 9.3277 −6.4506 −3.2548 4.2237 −3.2557
−2.9810 0.6557 3.0474 5.5252 2.7674 2.3311 9.6190 −6.6484
−2.4547 5.2676 −3.6434 5.5661 −7.5449 9.3079 −2.0459 −0.0728



T

Y =



−3.9885 0 0 0 0 0

0 0 8.6843 0 0 −1.6393
0 −1.7288 0 6.0559 2.2407 0



T

.
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The sparsity structure of Y implies that the following sets of state variables are strongly correlated or anti-
correlated across observations: {1}, {3, 6}, and {2, 4, 5}. This is apparent from computing the matrix of
sample correlation coefficients:

R =




1.0000 0.1526 −0.5698 −0.1534 −0.1554 0.5705
0.1526 1.0000 −0.0180 −1.0000 −1.0000 0.0198
−0.5698 −0.0180 1.0000 0.0209 0.0212 −1.0000
−0.1534 −1.0000 0.0209 1.0000 1.0000 −0.0227
−0.1554 −1.0000 0.0212 1.0000 1.0000 −0.0229
0.5705 0.0198 −1.0000 −0.0227 −0.0229 1.0000



. (25)

Suppose we start with a one-dimensional reduced basis corresponding to the first left singular vector of X

V (0) = V H = vH1 =
[
−0.2609 −0.0348 0.9390 0.1240 0.0463 −0.1773

]T
.

Because the data nearly lie in a three-dimensional subspace of R6, the optimal performance of a refinement
scheme would yield small error after splitting this one-dimensional basis into a basis of dimension three. Thus,
consider splitting V H into three children using a tree that follows the stated heuristic, i.e., is characterized
by C (1) = {2, 3, 4}, E (2) = {1}, E (3) = {3, 6}, and E (4) = {2, 4, 5}. The resulting basis becomes

V h =



−0.2609 0 0 0 0 0

0 0 0.9390 0 0 −0.1773
0 −0.0348 0 0.1240 0.0463 0



T

.

The resulting projection error of the data is merely ‖X − V h
(
V h
)+
X‖F /‖X‖F = 0.0033. By con-

trast, generating an alternative three-dimensional fine basis V̄ h by splitting the basis using a (similar)
tree characterized by E (2) = {1}, E (3) = {3, 5}, E (3) = {2, 4, 6}, yields a much larger error of ‖X −
V̄ h

(
V̄ h
)+
X‖F /‖X‖F = 0.4948.

One way to identify these correlated variables is to employ k-means clustering [24] after pre-processing
the data by 1) normalizing observations of each variable (to enable clustering to detect correlation), and
2) negating the observation vector if the first observation is negative (to enable clustering to detect anti-
correlation). This is visualized in Figure 2 for the current example. Note that correlated and anti-correlated
variables have a small Euclidean distance between them after this processing; this allows k-means clustering
to identify them as a group. �
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Figure 2: First two observations of the state variables (i.e., first two columns of X) for the example in Section 3.4. After
processing these observations by normalization and origin flipping, correlated and anti-correlated state variables are separated
by small geometric distances and can thus be grouped via clustering.
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Algorithm 1 Tree construction via recursive k-means clustering (offline)

Input: no snapshots of the reference-centered2 state in matrix form X ∈ Rn×no , number of means k̄
Output: child function C, element function E, and number of nodes m

1: for i = 1, . . . , n do
2: Normalize rows of X to capture correlation by clustering xTi ← xTi /‖xTi ‖
3: if xi1 < 0 then {Flip over origin to capture negative correlation by clustering}
4: xTi ← −xTi
5: end if
6: end for
7: Set root node to contain all elements E (1) = N(n).
8: Initialize recent-node set D ← {1} and node count m← 1.
9: while card (D) > 0 do

10: D̄ ← D, D ← ∅
11: for i = 1, . . . , card

(
D̄
)

do
12: Set splitting node to the ith element of the recent-node set d← D̄ (i), where ordering is implied by

≥ on the natural numbers.
13: if E (d) = ∅ then {No elements to split}
14: Continue
15: end if
16: Select snapshots of current elements x̄jk ← xE(d,j)k, j ∈ N(card (E (d))), k ∈ N(no)

17: (Ē1, . . . , Ēnc
) = kmeans

(
X̄, k̄

)
, where Ēj ⊂ N(card (E (d))) denotes the set of elements in cluster

j, and nc denotes the number of non-empty clusters.
18: if nc= 1 then {Cannot have only one child}
19: for j = 1, . . . , card (E (d)) do {Make all children into leaf nodes}
20: Ēj = j
21: end for
22: end if
23: for j = 1, . . . , nc do
24: m← m+ 1
25: D ← D ∪m
26: E (m) = {E (d, j) | j ∈ Ēj}
27: C (d, j) = m
28: end for
29: end for
30: end while

To this end, we construct the tree offline by recursively applying k-means clustering to observations of the
state variables (after reference subtraction, normalization, and origin flipping). Algorithm 1 describes the
method. The no observations of these variables are obtained from snapshot data, which are often available,
e.g., when the reduced basis is constructed via proper orthogonal decomposition.

4. Dual-weighted residual error indicators

To compute error indicators for refinement, we propose a goal-oriented dual-weighted residual method-
ology based on adjoint solves. It can be considered a model-reduction adaptation of duality-based error-
control methods developed for differential equations [25, 26], finite-element discretizations [27, 28, 29, 30],
finite-volume discretizations [31, 32, 33], and discontinuous Galerkin discretizations [34, 35]. Because the
proposed method performs refinement online at the iteration level, it requires error indicators associated
with the error in ROM output at iteration k, i.e., g(x̄+V x̂k;µ). To simplify notation in this section, we set

2This implies that the reference state x̄ should be subtracted from the state snapshots.
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x̄ = 0 and write the associated single solve (Eq. (4) for a single iteration and parameter instance) simply as

V Tr(V x̂) = 0. (26)

First, we approximate the output due to the (unknown) fine solution x̂h to first-order about the coarse
solution x̂H :

g
(
V hx̂h

)
≈ g

(
V H x̂H

)
+
∂g

∂x

(
V H x̂H

)
V h

(
x̂h − IhH x̂H

)
, (27)

where we have used Eq. (9) to relate the coarse and fine bases. Similarly, we can approximate the fine
residual to first order about the coarse solution as

0 = (V h)Tr
(
V hx̂h

)
≈ (V h)Tr

(
V H x̂H

)
+ (V h)T

∂r

∂x

(
V H x̂H

)
V h

(
x̂h − IhH x̂H

)
. (28)

Solving for the state error yields

(
x̂h − IhH x̂H

)
≈ −

[
(V h)T

∂r

∂x

(
V H x̂H

)
V h

]−1

(V h)Tr
(
V H x̂H

)
(29)

Substituting (29) in (27) yields

g
(
V hx̂h

)
− g

(
V H x̂H

)
≈ −

(
ŷh
)T

(V h)Tr
(
V H x̂H

)
. (30)

where the fine adjoint solution ŷh ∈ Rq satisfies

(V h)T
∂rk

∂x
(V H x̂H)TV hŷh = (V h)T

∂g

∂x

(
V H x̂H

)T
. (31)

Because we would like to avoid q-dimensional solves associated with the fine basis V h, we approximate
ŷh as the prolongation of the coarse adjoint solution

ŷhH = IhH ŷ
H , (32)

where ŷH satisfies
(
V H

)T ∂rk
∂x

(V H x̂H)TV H ŷH =
(
V H

)T ∂g

∂x

(
V H x̂H

)T
(33)

Substituting the approximation ŷhH for ŷh in (30) yields a cheaply computable error estimate

g
(
V hx̂h

)
− g

(
V H x̂H

)
≈ −

(
ŷhH
)T

(V h)Tr
(
V H x̂H

)
. (34)

The right-hand side can be bounded as

|
(
ŷhH
)T

(V h)Tr
(
V H x̂H

)
| ≤

∑

i∈N(q)

δhi , (35)

where the error indicators δhi ∈ R+, i ∈ N(q) are

δhi = |
[
ŷhH
]
i

(
vhi
)T
r
(
V H x̂H

)
|. (36)

Meyer and Matties [36] also proposed a dual-weighted residual method for reduced-order models. However,
their approach was not applied to adaptive refinement and did not consider a hierarchy of reduced bases;
further, their proposed dual solve was carried out on the full-order model, which is infeasibly expensive for
the present context.

Remark. Some mesh-refinement techniques [31, 32] advocate computing refinement indicators that minimize
the error in the computable correction

(
ŷh − ŷhH

)T
(V h)Tr

(
V H x̂H

)
.

To approximate this quantity, they employ prolongation operators of varying fidelity, e.g., linear and
quadratic interpolants. Such a strategy is not straightforwardly applicable to the current context, as the
prolongation operator IhH is exact. �
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Algorithm 2 Error estimates (online)

Input: coarse reduced basis V H , coarse solution x̂H

Output: fine reduced basis V h, fine error-estimate vector δh

1: Solve coarse adjoint problem (33) for ŷH .
2: Define prolongation operator IhH via Eq. (15).
3: Define fine reduced basis V h via Eq. (9) and fine representation of adjoint solution ŷhH via Eq. (32)
4: Compute fine error-estimate vector δh via Eq. (36)

Algorithm 3 Adaptive h-refinement (online)

Input: iteration k, basis V , ROM solver tolerance εROM, FOM solver tolerance ε
Output: updated basis V , generalized state x̂k

1: Compute ROM solution x̂k satisfying ‖V Trk(x̄+ V x̂k;µ)‖ ≤ εROM.
2: if FOM not converged ‖rk(x̄+ V x̂k;µ)‖ > ε then
3: Refine basis via Algorithm 4: V ← Refine

(
V , x̂k

)
.

4: Return to Step 1.
5: end if
6: if mod (k, nreset) = 0 then
7: Reset basis V ← V (0).
8: end if

5. Adaptive h-refinement algorithm

We now return to the original objective of this paper: adaptively refine the reduced-order model online.
Algorithm 3 describes our proposed methodology for achieving this within a time-integration scheme. Step
1 first computes the reduced-order-model solution satisfying a tolerance εROM. Then in Step 2, refinement
occurs if the norm of the full-order residual is above a desired threshold ε. Note that other (inexpensive)
error indicators could be used to flag refinement, e.g., error surrogates [37]. Refinement continues until this
full-order tolerance is satisfied; note that any tolerance can be reached, as a completely split basis yields
a reduced-order model equivalent to the full-order model (see Section 3.1). Finally, Step 7 resets the basis
every nreset time iterations. This ensures 1) the basis does not grow monotonically, and 2) work performed
to refine the basis can be amortized over subsequent time steps, where the solution is unlikely to significantly
change. Note that if Step 1 entails an iterative solve (e.g., Newton), then the pre-refinement solution can be
employed as an initial guess.

Algorithm 4 describes the proposed method for refining the basis using the refinement mechanism and
error indicators presented in Sections 3 and 4, respectively. Appendix Appendix A describes a more
sophisticated approach wherein the basis vectors are not split into all possible children; the children are
separated into groups, each of which contributes roughly the same fraction of that vector’s error.

First, Step 1 of Algorithm 4 computes error estimates for the fine basis (i.e., current basis with all vectors
split into all possible children) using the dual-weighted residual approach. Step 3 marks the parent basis
vectors to refine: those with above-average error contribution from its children. Steps 5–8 split the parent
vector i into vectors corresponding to its qi children according to the defined tree. Steps 9–12 update the
reduced basis and tree nodes. Because this split does not guarantee a full-ranks basis, Step 14 performs an
efficient QR factorization with column pivoting to identify ‘redundant’ basis vectors. Step 15 subsequently
removes these vectors from the basis and Step 16 performs the necessary bookkeeping for the tree nodes.

6. Numerical experiments: parameterized inviscid Burgers’ equation

We assess the method’s performance on the parameterized inviscid Burgers’ equation. While simple,
this problem is particularly challenging for reduced-order models. This arises from the fact that ROMs
approximate the solution as a linear combination of spatially fixed reduced-basis functions; as such, they
work well when the dynamics are primarily Eulerian, i.e., are fixed with respect to the underlying grid.
However, when the dynamics are Lagrangian in nature and exhibit motion with respect to the underlying
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Algorithm 4 Refine (online)

Input: initial basis V , reduced solution x̂
Output: refined basis V

1: Compute fine error-estimate vector and fine reduced basis via Algorithm 2:(
δh,V h

)
← Error estimates (V , x̂).

2: Put local error estimates in parent–child format ηij = δhf(i,j), i ∈ N(p), j ∈ N(qi).

3: Mark basis vectors to refine I = {i | ∑j ηij ≥ 1/p
∑
kj ηkj}

4: for i ∈ I do {Split vi into qi vectors}
5: for k ∈ N(qi) do
6: xk = vhf(i,k)

7: d̄k = C (di, k)
8: end for
9: vi ← x1, di ← d̄1

10: for k = 2, . . . qi do
11: vp+k−1 ← xk, dp+k−1 ← d̄k,
12: end for
13: end for
14: Compute thin QR factorization with column pivoting V = QR, RΠ̄ = Q̄R̄.
15: Ensure full-rank matrix V ← V [π̄1 · · · π̄r], where r denotes the numerical rank of R.
16: Update tree [d1 · · · dr]← [d1 · · · dp] [π̄1 · · · π̄r].

grid (e.g., moving shocks), reduced-order models generally fail to capture the critical phenomenon at every
time step and parameter instance.

We employ the problem setup described in Ref. [38]. Consider the parameterized initial boundary value
problem

∂u(x, τ)

∂τ
+

1

2

∂
(
u2 (x, τ)

)

∂x
= 0.02eµ2x (37)

u(0, τ) = µ1, ∀τ > 0 (38)

u(x, 0) = 1, ∀x ∈ [0, 100] , (39)

where µ1 and µ2 are two real-valued input variables. Godunov’s scheme discretizes the problem, which
leads to a finite-volume formulation consistent with the original formulation in Eq. (1). The one-dimensional
domain is discretized using a grid with 251 nodes corresponding to coordinates coordinates xi = i×(100/250),
i = 0, . . . , 250. Hence, the resulting full-order model is of dimension n = 250. The solution u(x, τ) is
computed in the time interval τ ∈ [0, 50] using a uniform computational time-step size ∆t = 0.05, leading to
t = 1000 total time steps.

For simplicity, we employ a POD–Galerkin ROM. During the offline stage, snapshots of the state are
collected for the first ttrain time steps at training inputs. Then, the initial condition is subtracted from
these snapshots, and they are concatenated column-wise to generate the snapshot matrix. Finally, the thin
singular value decomposition of the snapshot matrix is computed, and the initial reduced basis V (0) is set
to the first p(0) left singular vectors. During the online stage, a Galerkin projection is employed using this
reduced basis. For all experiments, the initial condition is set to the reference condition, i.e., x̄ = x0.
For h-adaptivity, we set the number of means to k̄ = 10 in Algorithm 1. For Algorithm 2, the output of
interest is set to the residual norm, i.e., g(xk;µ) = ‖r̃k(xk;µ)‖22. For Algorithm 3, the ROM tolerance is
set to εROM = 5 × 10−3.3 The basis-reset frequency nreset will vary during the experiments. Step 1 incurs
a Newton solve; when refinement has occurred, the initial guess is set to the converged solution from the
previous refinement level. Finally, the experiments employ the (more complex) Refine method defined by
Algorithm 5 with a child-partition factor α = 2.

3For the ROMs without adaptivity, the ROM convergence tolerance is set to εROM = 1× 10−5.
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Note that because the residual operator is nonlinear in the state, a projection alone is insufficient to
generate computational savings over the full-order model. Future work will address extending the proposed h-
refinement method to ROMs equipped with a complexity reduction mechanism such as empirical interpolation
or gappy POD.

6.1. Fixed inputs

For this example, the input parameters are set to µ1 = 3 and µ2 = 0.02. However, the problem can be
considered to be predictive, as we only collect snapshots in the time interval τtrain ∈ [0, 7.5], i.e., for the
first ttrain = 150 time steps. This choice is made to introduce a significant challenge for the ROM: while the
(unrefined) reduced basis captures discontinuities that arise in the first 150 time steps, it will not capture
such discontinuities that arise outside of this time interval.4

Table 1 reports results for typical POD–Galerkin ROMs of differing dimensions, as well as results for the
proposed h-refinement method with different parameters and a FOM tolerance in Algorithm 3 of ε = 0.05.
Here, the relative error is defined as

relative error =
1

t

t∑

k=1

‖uFOM(·, τk)− uROM(·, τk)‖L2/‖uFOM(·, τk)‖L2 .

Figure 3 compares the solutions predicted by POD–Galerkin with no basis truncation (i.e., p = 150) and

that of the proposed method with an initial basis size of p(0) = 10 with V (0) ∈ Rn×p(0) and a basis-reset
frequency of nreset = 50.

no adaptivity h-adaptivity

initial basis dimension p(0) 10 45 150 5 10 20 10 10
basis-reset frequency nreset 50 50 50 100 25

average basis dimension
10 45 150 41.4 44.3 58 73 37

per Newton iteration p̄
average number of Refine

0.20 0.19 0.14 0.13 0.28
calls per time step

relative error (%) 45.8 43.9 8.5 0.3 0.5 0.2 0.2 0.3
online time (seconds) 1.4 2.14 5.77 5.53 4.63 7.27 6.90 7.46

Table 1: Comparison between POD–Galerkin ROMs without refinement and with h-adaptive refinement for the fixed-inputs
case.

First, note that the reduced-order model is highly inaccurate (even when the basis is not truncated)
unless equipped with h-adaptivity. The reason for this is simple: the training has not captured the flow
regime with shock locations past approximately x = 60. This illustrates a powerful capability of the proposed
h-adaptation methodology: it enables ROMs to be incrementally refined to capture previously unobserved
phenomena. In fact, the average basis dimension (per Newton iteration) for the best-performing h-adaptive
ROM (p(0) = 10, nreset = 50) is only p̄ = 44.3, which is smaller than the basis dimensions for ROMs without
adaptivity (p = 45 and p = 150) that yield much higher errors (43.9% and 8.5%, respectively).

Second, adaptation parameters p(0) and nreset both lead to a performance tradeoff. When p(0) is small,
it leads to smaller average basis sizes p̄. However, it increases the number of Refine calls per time step, as
the smaller basis must be refined more times to achieve desired accuracy. Similarly, resetting the basis more
frequently (smaller nreset) leads to a smaller p̄, but more average refinement steps. As such, an intermediate
value of both parameters leads to the shortest online evaluation time.

Finally, notice that the online evaluation time for the adaptive ROM with an average basis size of p̄ = 44.3
is roughly twice that of a non-adaptive ROM with roughly the same basis size p = 45. This discrepancy in
evaluation time can be attributed to the overhead in performing the adaptation. For larger problem sizes,
one would expect this overhead to be smaller relative to the total online evaluation time.

4Note that the refinement method can also be applied when the original reduced basis captures all relevant online phenomena;
however, the need for a posteriori refinement is weaker in this case.
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Figure 3: Comparison of solutions computed by POD–Galerkin with and without h-adaptivity for the fixed-inputs case.

Next, we assess the performance of the h-refinement method as the full-order-model tolerance ε in Algo-
rithm 3 varies. Table 2 and Figure 4 report the results. As expected, the proposed method allows the ROM
to achieve any of the prescribed tolerances. As the tolerance becomes more rigorous, the ROM solution
improves; however, it does so at increased computational cost, as both the average basis dimension p̄ and
number of Refine calls per time step increase to satisfy the requirement.

ε = 0.35 ε = 0.05 ε = 0.01

average basis dimension
33.6 44.2507 53.9

per Newton iteration p̄
average number of Refine

0.115 0.189 0.212
calls per time step

relative error (%) 12.2 0.51 0.078
online time (seconds) 4.61 4.63 7.64

Table 2: Effect of full-order-model tolerance ε on h-adaptive refinement for p(0) = 10 and nreset = 50 for the fixed-inputs case.

6.2. Input variation

For this experiment, we assess the proposed methodology in an input-varying scenario. In particular, the
offline stage collects snapshots in the time interval τtrain ∈ [0, 2.5] for the training set {µ1, . . . ,µ3} described
in Table 3, which is constructed by uniformly sampling the input space along (µ1, µ2) = (3α, 0.02α), α ∈ [1, 3].

Figure 5 and Table 4 report the results for this experiment. The same phenomena are prevalent as
were apparent in the previous experiment. The primary difference is that the POD–Galerkin model without
adaptivity performs better than previously (due to more informative snapshots). However, h-adaptivity is
still required to drive errors below 1%. Note that the proposed method compensated for an unsophisticated
uniform-sampling of the input space. The method would still be applicable for more rigorous (e.g., POD–
Greedy [39]) sampling methods, which would lead to a more robust initial basis V (0) and reduce the burden
of h-adaptivity to generate accurate results.

Table 3: Offline and online inputs for the inviscid Burgers equation

Input variables
Training point Training point Training point Online point

µ1 µ2 µ3 µ?

µ1 3 6 9 4.5
µ2 0.02 0.05 0.075 0.038
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Figure 4: Comparison of solutions computed by h-adaptive POD–Galerkin for different full-order-model tolerances ε for the
fixed-inputs case.

 

 

ROM

FOM

u

x

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9

(a) no adaptivity, no truncation (p = 150)

 

 

ROM
FOM

u

x

0 20 40 60 80 100
1

2

3

4

5

6

7

8

9

(b) h-adaptivity, no truncation (p(0) = 20), nreset =
100
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no adaptivity h-adaptivity

initial basis dimension p(0) 10 78 150 5 20 30 20 20
basis-reset frequency nreset 100 100 100 200 50

average basis dimension
10 78 150 69.8 77.2 87.6 130.6 65.6

per Newton iteration p̄
average number of Refine

0.20 0.072 0.07 0.044 0.11
calls per time step

relative error (%) 41.8 1.7 1.4 0.22 0.14 0.45 0.53 0.70
online time (seconds) 1.75 3.54 8.55 6.41 6.06 8.11 9.11 8.78

Table 4: Comparison between POD–Galerkin ROMs without refinement and with h-adaptive refinement for the input-variation
case.

7. Conclusions

This work has presented an adaptive h-refinement method for reduced-order models. Key components
include 1) an h-refinement mechanism based on basis splitting and tree structure constructed via k-means
clustering, 2) dual-weighted residual error indicators, and 3) an adaptive algorithm to moderate when and
how to perform the refinement. In contrast to existing a priori adaptive methods, the proposed technique
provides a mechanism to improve the ROM solution a posteriori. As opposed to existing a posteriori
methods, the proposal does so without incurring any large-scale operations. Numerical examples on the
inviscid Burgers equation highlighted the method’s ability to accurately predict phenomena not present in
the training data used to construct the reduced basis.

Future research directions include incorporating complexity reduction (e.g., empirical interpolation, gappy
POD) into the refinement process. In particular, as the reduced basis is refined, sample points (and dual
reduced-basis vectors) must be added in a systematic way to ensure the reduced-order model remains solvable.
Similar to the manner in which the tree defining the (complete) splitting mechanism is constructed offline,
one could generate a hierarchy of these sample points offline from the training data, e.g., by executing
[22, Algorithm 3] for ns equal to the number of nodes in the mesh. In addition, it would be interesting
to incorporate a more sophisticated adaptive coarsening technique (compared to the simple basis-resetting
mechanism in Step 7 of Algorithm 3); for example, one could combine basis vectors whose generalized
coordinates are strongly correlated (or anti-correlated) over recent time steps. Further, it would be interesting
to pursue adaptive p-refinement methods, wherein other basis vectors (e.g., truncated POD vectors, discrete
wavelets) with possibly global support are added from a library to enrich the reduced basis. In addition, it
would be useful to pursue alternative tree-construction methods that satisfy Conditions 1–3 of Section 3.1.
Assessing the effect of the proposed refinement method on ROM stability would also constitute an interesting
investigation. Finally, it would be advantageous to incorporate Richardson extrapolation in the refinement
method to better approximate the outputs of interest; however, this requires knowledge of the convergence
rate of the reduced-order model with respect to adding basis vectors.

Appendix A. Refinement algorithm with multiple trees

This section presents a more sophisticated refinement mechanism than that that presented in Section 5.
In particular, when a vector is flagged for refinement, it is not necessarily split into all its children. Rather,
its children are separated into groups, each of which contributes roughly the same fraction α of the total error
for that parent vector. This avoids over-refinement when the number of children is relatively large. However,
this leads to an increase in required bookkeeping, as the tree structure changes when children merge: the
tree must be altered and separately maintained for each vector. Thus, each basis vector vi, i = 1, . . . , p will
be characterized by its own tree Ci, Ei with mi nodes, as well as a node on that tree di ∈ N(mi).

Algorithm 5 describes the modifications needed to Algorithm 4 to enable this feature. Key modifications
include the following. Steps 7–22 separate the children of the parent vector’s tree node di into groups; the
resulting maintenance of the tree structures is performed in Steps 18–19.5 In steps 23–26, not only is the

5Only the lower levels of the tree must be updated, as the current methodology never traverses up a tree.
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Algorithm 5 Refine (child grouping) (online)

Input: initial basis V , reduced solution x̂, child-partition factor α ≤ 1
Output: refined basis V

1: Compute fine error-estimate vector and fine reduced basis via Algorithm 2:(
δh,V h

)
← Error estimates (V , x̂).

2: Put local error estimates in parent–child format ηij = δhf(i,j), i ∈ N(p), j ∈ N(qi).

3: Mark basis vectors to refine I = {i | ∑j ηij ≥ 1/p
∑
kj ηkj}

4: for i ∈ I do {Split vi into k vectors}
5: p← dim (range (V ))
6: Initialize additional-vector count k ← 0 and handled child-node set D ← ∅
7: while D 6= N(qi) do {Divide child nodes into groups with roughly equal error}
8: Dk = arg minz⊂K card (z), where K = {z ⊂ N(qi) \D |

∑
j∈z ηij ≥ α

∑
j ηij}.

9: if Dk = ∅ then
10: Take all remaining children Dk = N(qi) \D
11: end if
12: xk =

∑
j∈Dk

vhf(i,j)

13: Update tree: C̄k ← Ci, Ēk ← Ei
14: if card(Dk) = 1 then {Use the same tree}
15: d̄k = Ci (di, Dk)
16: else {Alter the tree}
17: d̄k = di
18: C̄k

(
d̄k
)

= {Ci (di, k) | k ∈ Dk}
19: Ēk

(
d̄k
)

=
⋃
k∈C̄k(di)

Ei (k)
20: end if
21: k ← k + 1, D ← D ∪Dk

22: end while
23: vi ← x0, Ci ← C̄0, Ei ← Ē0 di ← d̄0

24: for l = 1, . . . , k do
25: vp+l ← xl, Cp+l ← C̄l, Ep+l ← Ēl, dp+l ← d̄l
26: end for
27: end for
28: Compute thin QR factorization with column pivoting V = QR, RΠ̄ = Q̄R̄.
29: Ensure full-rank matrix V ← V [π̄1 · · · π̄r], where r denotes the numerical rank of R.
30: Update tree [C1 · · · Cr]← [C1 · · · Cp] [π̄1 · · · π̄r];

[E1 · · · Er]← [E1 · · · Ep] [π̄1 · · · π̄r];
[d1 · · · dr]← [d1 · · · dp] [π̄1 · · · π̄r].

basis updated, but the trees are as well. Finally, Step 30 performs the necessary bookkeeping for the tree
structures due to the removal of redundant basis vectors.
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Chapter 4

The ROMES method for statistical
modeling of reduced-order-model error

This chapter introduces the reduced-order model error surrogate (ROMES) method for statistically
quantifying reduced-order model errors. Rather than quantify the error using an error bound,
we instead construct a statistical model of the error, which leads to a distribution over the error
for a given reduced-order-model simulation. This can be interpreted as the epistemic uncertainty
introduced by the ROM, which can be incorporated into uncertainty-quantification tasks. This
work has been submitted to the SIAM Journal on Uncertainty Quantification and is past the first
round of revisions at the time of this writing.
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Abstract. This work presents a technique for statistically modeling errors introduced by reduced-order models.
The method employs Gaussian-process regression to construct a mapping from a small number of
computationally inexpensive ‘error indicators’ to a distribution over the true error. The variance of
this distribution can be interpreted as the (epistemic) uncertainty introduced by the reduced-order
model. To model normed errors, the method employs existing rigorous error bounds and residual
norms as indicators; numerical experiments show that the method leads to a near-optimal expected
effectivity in contrast to typical error bounds. To model errors in general outputs, the method uses
dual-weighted residuals—which are amenable to uncertainty control—as indicators. Experiments
illustrate that correcting the reduced-order-model output with this surrogate can improve prediction
accuracy by an order of magnitude; this contrasts with existing ‘multifidelity correction’ approaches,
which often fail for reduced-order models and suffer from the curse of dimensionality. The proposed
error surrogates also lead to a notion of ‘probabilistic rigor’, i.e., the surrogate bounds the error
with specified probability.

Key words. model reduction, uncertainty quantification, a posteriori error estimation, Gaussian processes,
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1. Introduction. As computing power increases, computational models of engineered sys-
tems are being employed to answer increasingly complex questions that guide decision making,
often in time-critical scenarios. It is becoming essential to rigorously quantify and account
for both aleatory and epistemic uncertainties in these analyses. Typically, the high-fidelity
computational model can be viewed as providing a (costly-to-evaluate) mapping between
system inputs (e.g., uncertain parameters, decision variables) and system outputs (e.g., out-
comes, measurable quantities). For example, data assimilation employs collected sensor data
(outputs) to update the distribution of uncertain parameters (inputs) of the model; doing
so via Bayesian inference requires sampling from the posterior distribution, which can entail
thousands of forward model simulations. The computational resources (e.g., weeks on a super-
computer) required for large-scale simulations preclude such high-fidelity models from being
feasibly deployed in such scenarios.

To avoid this bottleneck, analysts have turned to surrogate models that approximate
the input–output map of the high-fidelity model, yet incur a fraction of their computational
cost. However, to be rigorously incorporated in uncertainty-quantification (UQ) contexts, it
is critical to quantify the additional uncertainty introduced by such an approximation. For
example, Bayesian inference aims to sample from the posterior distribution

(1.1) P[µ|s̄] ∝ P[µ]P[s̄|µ],

∗Sandia National Laboratories
7011 East Ave, MS 9159, Livermore, CA 94550, ({mdrohma, ktcarlb}@sandia.gov). Questions, comments, or
corrections to this document may be directed to these email addresses.
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2 ROMES METHOD

where µ ∈ P ⊂ Rnµ denote system inputs, s̄ ∈ R denotes the measured output,1 P[µ]
represents the prior, and P[s̄|µ] denotes the likelihood function. Typically, the measured
output is modeled as s̄ = s(µ) + ε, where s : P → R denotes the outputs predicted by the
high-fidelity model for inputs µ, and ε is a random variable representing measurement noise.
Sampling from this posterior distribution (e.g., via Markov-chain Monte–Carlo or importance
sampling) is costly, as each sample requires at least one evaluation of the high-fidelity input–
output map µ 7→ s that appears in the likelihood function.

When a surrogate model is employed, the measured output becomes s̄ = ssurr(µ)+δs(µ)+ε,
where ssurr : P → R denotes the output predicted by the surrogate model, and δs : P → R rep-
resents the surrogate-model output error or bias. In this case, posterior sampling requires only
evaluations of the surrogate-model input–output map µ 7→ ssurr—which is computationally
inexpensive—as well as evaluation of the surrogate-model error δs(µ), which is not precisely
known in practice. As such, it can be considered a source of epistemic uncertainty, as it can be
reduced in principle by employing the original high-fidelity model (or a higher fidelity surro-
gate model). The goal of this work is to construct a statistical model of this surrogate-model
error δ̃s(µ) that is 1) cheaply computable, 2) exhibits low variance (i.e., introduces minimal
epistemic uncertainty), and 3) whose distribution can be numerically validated.

Various approaches have been developed for different surrogate models to quantify the
surrogate error δs(µ). Surrogate models can be placed into three categories [15]: 1) data fits,
2) lower-fidelity models, and 3) reduced-order models. Data fits employ supervised machine-
learning methods (e.g., Gaussian processes, polynomial interpolation [17]) to directly model
the high-fidelity input–output map. Within this class of surrogates, it is possible to statis-
tically model the error for stochastic-process data fits, as a prediction for inputs µ yields a
mean ssurr(µ) and a mean-zero distribution δs(µ) that can be associated with epistemic un-
certainty. While such models are (unbeatably) fast to query and non-intrusive to implement,2

they suffer from the curse of dimensionality and lack access to the underlying model’s physics,
which can hinder predictive robustness.

Lower-fidelity models simply replace the high-fidelity model with a ‘coarsened’ model ob-
tained by neglecting physics, coarsening the mesh, or employing lower-order finite elements,
for example. While such models remain physics based, they often realize only modest compu-
tational savings. For such problems, ‘multifidelity correction’ methods have been developed,
primarily in the optimization context. These techniques model the mapping µ 7→ δs using a
data-fit surrogate; they either enforce ‘global’ zeroth-order consistency between the corrected
surrogate prediction and the high-fidelity prediction at training points [19, 23, 27, 33, 29], or
‘local’ first- or second-order consistency at trust-region centers [2, 15]. Such approaches tend
to work well when the surrogate-model error exhibits a lower variance than the high-fidelity
response [29] and the input-space dimension is small.

Reduced-order models (ROMs) employ a projection process to reduce the state-space
dimensionality of the high-fidelity computational model. Although intrusive to implement,
such physics-based surrogates often lead to more significant computational gains than lower-

1This work considers one output for notational simplicity. All concepts can be straightforwardly extended
to multiple outputs. The numerical experiments treat the case of multiple outputs.

2Their construction requires only black-box evaluations of the input–output map of the high-fidelity model.
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ROM data multifidelity ROM +
fits correction ROMES

non–intrusive × X X ×
output-error correction × N/A X X
rigorous error bounds X × × (X)∗

tight error bounds (X)† × × X
* probabilistically rigorous
† good effectivity can only be obtained with very intrusive methods.

Table 1
Features of different surrogate models

fidelity models, and higher robustness than data fits. For such models, error analysis has been
limited primarily to computing rigorous a posteriori error bounds ∆s(µ) satisfying |δs(µ)| ≤
∆s(µ) [7, 21, 36]. Especially for nonlinear problems, however, these error bounds are often
highly ineffective, i.e., they overestimate the actual error by orders of magnitude [13]. To
overcome this shortcoming and obtain tighter bounds, the ROM must be equipped with
complex machinery that both increases the computational burden [41, 24] and is intrusive to
implement (e.g., reformulate the discretization of the high-fidelity model [39, 42]). Further,
rigorous bounds are not directly useful for uncertainty quantification (UQ) problems, where
a statistical error model that is unbiased, has low variance, and is stochastic is more useful.
Recent work [29, Section IV.D] has applied multifidelity correction to ROMs. However, the
method did not succeed because the ROM error is often a highly oscillatory function of the
inputs and therefore typically exhibits a higher variance than the high-fidelity response.

In this paper, we introduce the ROM Error Surrogates (ROMES) method that aims to
combine the utility of multifidelity correction with the computational efficiency and robustness
of reduced-order modeling. Table 1 compares the proposed approach with existing surrogate-
modeling techniques. Similar to the multifidelity-correction approach, we aim to model the
ROM error δs using a data-fit surrogate. However, as directly approximating the mapping
µ 7→ δs is ineffective for ROMs, we instead exploit the following key observation: ROMs
often generate a small number of physics-based, cheaply computable error indicators ρ : P →
Rq that correlate strongly with the true error δs(µ). Examples of indicators include the
residual norm, dual-weighted residuals, and the rigorous error bounds discussed above. To
this end, ROMES approximates the low-dimensional, well-behaved mapping ρ(µ) 7→ δs(µ)
using Gaussian-process regression, which is a stochastic-process data-fit method. Note that
ROMES constitutes a generalization of the multifidelity correction approach, as the inputs
(or features) of the error model can be any user-defined error indicator—they need not be the
system inputs µ. Figure 1 depicts the propagation of information for the proposed method.

In addition to constructing an error surrogate for the system outputs, ROMES can also
be used to construct a statistical model for the norm of the error in the system state. Further,
ROMES can be used to generate error bounds with ‘probabilistic rigor’, i.e., an error bound
that overestimates the error with a specified probability.

Next, Section 2 introduces the problem formulation and provides a general but brief in-
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Input

µ
Reduced-order model

Output

sred(µ) := s(ured(µ))

Error indicators

ρ(µ)
ROMES

Error surrogates

error ‖̃δu‖(ρ(µ)) or output error δ̃s(ρ(µ))

Figure 1. ROMES method. The output quantities of interest can be ‘corrected’ by adding the ROM error
surrogate to the ROM output prediction, i.e., s(µ) ≈ scorr(µ) := sred(µ) + δ̃s(ρ(µ)).

troduction to model reduction. In Section 3, we introduce the ROMES method, including its
objectives, ingredients, and some choices of these ingredients for particular errors. Section 4
briefly summarizes the Gaussian-process kernel method [35] and the relevance vector machine
[38], which are the two machine-learning algorithms we employ to construct the ROMES
surrogates. However, the ROMES methodology does not rely on these two techniques, as
any supervised machine learning algorithm that generates a stochastic process can be used,
as long as it generates a statistical model that meets the important conditions described in
Section 3.1. Section 5 analyses the performance of the method when applied with the reduced-
basis method to solve Poisson’s equation in two dimensions using nine system inputs. The
method is also compared with existing rigorous error bounds for normed errors, and with the
multifidelity correction approach for errors in general system outputs.

For additional information on the reduced-basis method, including the algorithms to gen-
erate the reduced-basis spaces and the computation of error bounds, we refer to the supple-
mentary Section S1.

2. Problem formulation. This section details aspects of the high-fidelity and reduced-
order models that are important for the ROMES surrogates. We begin with a formulation
of the high-fidelity model in Section 2.1 and the reduced-order model in Section 2.2. Finally,
we elaborate on the errors introduced by the model-reduction process and possible problems
with their quantification in Section 2.3.

2.1. High-fidelity model. Consider solving a parameterized systems of equations

(2.1) r(u;µ) = 0,

where u : P → Rn denotes the state implicitly defined by Eq. (2.1), µ ∈ P ⊂ Rnµ denotes
the system inputs, and r : Rn × Rnµ → Rn denotes the residual operator. This model is
appropriate for stationary problems, e.g., those arising from the finite-element discretization
of elliptic PDEs. For simplicity, assume we are interested in computing a single output

(2.2) s(µ) := g(u(µ))

with s : Rnµ → R and g : Rn → R.
When the dimension n of the high-fidelity model is ‘large’, computing the system outputs

s by first solving Eq. (2.1) and subsequently applying Eq. (2.2) can be prohibitively expensive.
This is particularly true for many-query problems arising in UQ such as Bayesian inference,
which may require thousands of input–output map evaluations µ 7→ s.
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2.2. Reduced-order model. Model-reduction techniques aim to reduce the burden of solv-
ing Eq. (2.1) by employing a projection process. First, they execute a computationally expen-
sive offline stage (e.g., solving Eq. (2.1) for a training set µ ∈ Ptrain ⊂ P) to construct 1) a
low-dimensional trial basis (in matrix form) V ∈ Rn×p with p� n that (hopefully) captures
the behavior of the state u throughout the parameter domain P, and 2) an associated test
basis W ∈ Rn×p. Then, during the computationally inexpensive online stage, these meth-
ods approximately solve Eq. (2.1) for arbitrary µ ∈ P by searching for solutions in the trial
subspace range (V ) ⊂ Rn and enforcing orthogonality of the residual r to the test subspace
range (W ) ⊂ Rn:

(2.3) W tr(V û;µ) = 0.

Here, the state is approximated as ured(µ) := V û(µ) and the reduced state û(µ) ∈ Rp is
implicitly defined by Eq. (2.3). The ROM-predicted output is then sred(µ) := g (ured(µ);µ).

When the residual operator is nonlinear in the state or non-affine in the inputs, additional
complexity-reduction approximations such as empirical interpolation [5, 22], collocation [25,
3, 37], discrete empirical interpolation [12, 18, 14], or gappy proper orthogonal decomposition
(POD) [10, 11] are required to ensure that computing the low-dimensional residualW tr incurs
an n-independent operation count. In this case, the residual is approximated as r̃ ≈ r and
the reduced-order equations become

(2.4) W tr̃(V û;µ) = 0.

When the output operator is nonlinear and the vector ∂g/∂u is dense, approximations in the
output calculation are also required to ensure an n-independent operation count.

Section S1 describes in detail the construction of a reduced-order model using the reduced-
basis method applied to a parametrically coercive, affine, linear, elliptic PDE.

2.3. Reduced-order-model error bounds. One is typically interested in quantifying two
types of error incurred by model reduction: the state-space error δu(µ) := u(µ)−ured(µ) ∈ Rn
and the output error δs(µ) := s(µ) − sred(µ) ∈ R. In particular, many ROMs are equipped
with computable, rigorous error bounds for these quantities [31, 20, 30, 8, 13]:

(2.5) ∆u(µ) ≥ ‖δu(µ)‖ , ∆s(µ) ≥ |δs(µ)|

In cases, where the norm of the residual operator can be estimated tightly, lower bounds also
exist:

(2.6) ∆LB
u (µ) ≤ ‖δu(µ)‖ , ∆LB

s (µ) ≤ |δs(µ)| .

The performance of an upper bound is usually quantified by its effectivity, i.e., the factor by
which it overestimates the true error

(2.7) ηu(µ) :=
∆u(µ)

‖δu(µ)‖ ≥ 1, ηs(µ) :=
∆s(µ)

|δs(µ)| ≥ 1.

The closer these values are to 1, the ‘tighter’ the bound. For coercive PDEs, these effectivities
can be controlled by choosing a tight lower bound of the coercivity constant.
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While this can be easily accomplished for stationary, linear problems, it is difficult to find
tight lower bounds in almost all other cases. In fact, the resulting bounds often overestimate
the error by orders of magnitude [36, 13]. Because effectivity is critically important in practice,
various efforts have been undertaken to improve the tightness of the bounds. Huynh et
al. [24] developed the successive constraint method for this purpose; the method approximates
the coercivity-constant lower bounds by solving small linear programs online, which depend
on additional expensive offline computations. Alternatively, Refs. [39, 42] reformulate the
entire discretization of time-dependent problems using a space–time method that improves
the error bounds by incorporating solutions to dual problems. Another approach [41] aims to
approximate the coercivity constant by eigenvalue analysis of the reduced system matrices.
These methods all bloat the offline and the online computation time and often incur intrusive
changes to the high-fidelity-model implementation.

Regardless of effectivity, rigorous bounds satisfying inequalities (2.5) are not directly useful
for quantifying the epistemic uncertainty incurred by employing the ROM. Rather, a statistical
model that reflects our knowledge of these errors would be more appropriate. For such a model,
the mean of the distribution would provide an expected error; the variance would provide a
notion of epistemic uncertainty. The most straightforward way to achieve this would be
to model the error as a uniform probability distribution on an interval whose boundaries
correspond to the lower and upper bounds. Unfortunately, such an approach leads to wide,
uninformative intervals when the bounds suffer from poor effectivity; this will be demonstrated
in the numerical experiments.

Instead, we exploit the following observation: error bounds tend to be strongly correlated
with the true error. Figure 2 depicts this observed structure for a reduced-basis ROM applied
to an elliptic PDE (see Section 5.1 for details). On a logarithmic scale, the true error exhibits
a roughly linear dependence on both the bound and the residual norm, and the variance of the
data is fairly constant. As will be shown in Section 5.3, employing a multifidelity correction
approach wherein the error is modeled as a function of the inputs µ does not work well for
this example, both because the input-space dimension is large (nine) and the error is a highly
oscillatory function of these inputs.

Therefore, we propose constructing a stochastic process that maps such error indicators
to a random variable for the error. For this purpose, we employ Gaussian-process regression.
The approach leverages one strength of ROMs compared to other surrogate models: ROMs
generate strong ‘physics-based’ error indicators (e.g., error bounds) in addition to output
predictions. The next section describes the proposed method.

3. The ROMES method. The objective of the ROMES method is to construct a sta-
tistical model of the deterministic, but generally unknown ROM error δ(µ) with δ : P → R
denoting an R-valued error that may represent the norm of the state-space error ‖δu‖, the
output error δs, or its absolute value |δs|, for example. The distribution of the random variable
representing the error should reflect our (epistemic) uncertainty about its value. We assume
that we can employ a set of training points δ(µn), n = 1, . . . , N to construct this model.

3.1. Statistical model. Define a probability space (Ω,F , P ). We seek to approximate the
deterministic mapping m : µ 7→ d(δ(µ)) by a stochastic mapping m̃ : ρ(µ) 7→ d̃ with d̃ : Ω→ R
a real-valued random variable. Here, d : R→ R is an invertible transformation function (e.g.,
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Figure 2. Relationship between RB error bounds ∆u, residual norms ‖r(V û;µ)‖, and the true state-space
errors |||δu|||, visualized by evaluation of 200 random sample points in the input space. Here, |||·||| denotes the
energy norm defined in Section 5.1.

logarithm) that can be specified to facilitate construction of the statistical model. We can
then interpret the statistical model of the error as a random variable δ̃ : ρ 7→ d−1(m̃(ρ)).

Three ingredients must be selected to construct this mapping m̃: 1) the error indicators
ρ, 2) the transformation function d, and 3) the methodology for constructing the statistical
model from the training data. We will make these choices such that the stochastic mapping
satisfies the following conditions:

1. The indicators ρ(µ) are cheaply computable and low dimensional given any µ ∈ P.
In practice, they should also incur a reasonably small implementation effort, e.g., not
require modifying the underlying high-fidelity model.

2. The mapping m̃ exhibits low variance, i.e., E
[
(m̃(ρ(µ))− E [m̃(ρ(µ))])2

]
is ‘small’ for

all µ ∈ P. This ensures that little additional epistemic uncertainty is introduced.
3. The mapping m̃ is validated :

(3.1) ωvalidation (ω) ≈ ω, ∀ω ∈ [0, 1) ,

where ωvalidation (ω) is the frequency with which validation data lie in the ω-confidence
interval predicted by the statistical model

(3.2) ωvalidation (ω) :=
card ({µ ∈ Pvalidation | d(δ(µ)) ∈ Cω (µ)})

card (Pvalidation)
.

Here, the validation set Pvalidation ⊂ P should not include any of the points µn, n =
1, . . . , N employed to train the error surrogate, and the confidence interval Cω (µ) ⊂ R,
which is centered at the mean of m̃(ρ(µ)), is defined for all µ ∈ P such that

(3.3) P[m̃(ρ(µ)) ∈ Cω (µ))] = ω.

In essence, validation assesses whether or not the data do indeed behave as random
variables with probability distributions predicted by the statistical model.
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The next section describes the proposed methodology for selecting indicators ρ and trans-
formation function d. For constructing the mapping m̃ from training points, we will employ
the two supervised machine learning algorithms described in Section 4: the Gaussian process
(GP) kernel method and the relevance vector machine (RVM). Note that these are merely
guidelines for model construction, as there are usually no strong analytical tools to prove that
the mapping behaves according to a certain probability distribution. Therefore, any choice
must be computationally validated according to condition 3 above.

3.2. Choosing indicators and transformation function. The class of multifidelity-correction
algorithms can be cast within the framework proposed in Section 3.1. In particular, when a
stochastic process is used to model additive error, these methods are equivalent to the pro-
posed construction with ingredients δ = δs, ρ = µ, and d = idR with idR(x) = x, ∀x ∈ R the
identity function over R. However, as previously discussed, the mapping µ 7→ δs can be highly
oscillatory and non-smooth for reduced-order models; further, this approach is infeasible for
high-dimensional input spaces, i.e., nµ large. This was shown by Ng and Eldred [29, Section
IV.D]; we also demonstrate this in the numerical experiments of Section 5.3.

Note that all indicators and errors proposed in this section should be scaled (e.g., via
linear transformations) in practice such that they exhibit roughly the same range. This
‘feature scaling’ task is common in machine-learning and is particularly important when the
ROMES surrogate employs multiple indicators.

3.2.1. Normed and compliant outputs. As discussed in Section 2.3, many ROMs are
equipped with bounds for normed errors. Further, there is often a strong, well-behaved
relationship between such error bounds and the normed error (see Figure 2). In the case
of compliant outputs, the error is always non-negative, i.e., δs = |δs| (see Section S1.3), so we
can treat this error as a normed error.

To this end, we propose employing error bounds as indicators for the errors in the com-
pliant output |δs| and in the state ‖δu‖. However, because the bound effectivity often lies in
a small range (even for a large range of errors) [36], employing a logarithmic transformation
is appropriate. To see this, consider a case where the effectivity η of the error bound, defined
as

(3.4) η(µ) :=
∆(µ)

δ(µ)
≥ 1, ∀µ ∈ P,

lies within a range η1 ≤ η(µ) ≤ η2, ∀µ ∈ P. Then the relationship between the error bound
and the true error is

∆(µ)

η1
≥ δ(µ) ≥ ∆(µ)

η2
(3.5)

log ∆(µ)− log η1 ≥ log δ(µ) ≥ log ∆(µ)− log η2(3.6)

for all µ ∈ P. In this case, one would expect an affine model mapping log ∆(µ) to log δ(µ) with
constant Gaussian noise to accurately capture the relationship. So, employing a logarithmic
transformation permits the use of simpler surrogates that assume a constant variance in the
error variable. Therefore, we propose employing ρ = log ∆ and d = log for statistical modeling
of normed errors and compliant outputs.
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A less computationally expensive candidate for an indicator is simply the logarithm of the
residual norm ρ = log r, where r is the Euclidean norm of the residual vector

(3.7) r(µ) := ‖r(V û(µ);µ)‖2 .
For more information on the efficient computation of (3.7), we refer to Section S1.3.1. One
would expect this choice of indicator to produce a similar model to that produced by the
logarithm of the error bound: the error bound is often equal to the residual norm divided
by a (costly-to-compute) coercivity-constant lower bound (see Section S1.3). Further, em-
ploying the residual norm leads to a model that is less sensitive to strong variations in this
approximated lower bound.

Returning to the example depicted in Figure 2, the relationship between the error bound
and the energy norm of the state error in log-log space is roughly linear, and the vari-
ance is relatively small. The same is true of the relationship between the (computationally
cheaper) residual norm and the true error. As expected, these relationships can be accu-
rately modeled as a stochastic process with a linear mean function and constant variance
(more details in Section 5.1). Here, strong candidates for ROMES error indicators include
ρ1(µ) := r(µ),ρ2(µ) := ∆(µ), and ρ3(µ) := (r(µ),∆(µ)). In the experiments in Section 5,
we will consider the first choice, which is the least expensive and intrusive option, yet leads
to excellent results. For cases where the data are less well behaved, more error indicators can
be included, e.g., linear combinations of inputs or the output prediction.

Unfortunately, this set of ROMES ingredients is not applicable to errors in general outputs
of interest because the logarithmic transformation function assumes strictly positive errors.
The next section presents a strategy for handling this general case.

Remark 3.1 (Log-Normal distribution). In the case where d = log, the error models δ̃(µ),
µ ∈ P are random variables with log-normal distribution. If one is interested in the most
probable error, one might think to use the expected value of δ̃. However, the maximum of the
probability distribution function of a log-normally distributed random variable is defined by its
mode, which is less than the expected value. We therefore use mode(δ̃) if scalar values for the
estimation of the output error or the reduced state error are required.

3.2.2. General outputs. This section describes the ROMES ingredients we propose for
modeling the error δs in a general output s(µ) := g(u(µ)). Dual-weighted-residual approaches
are commonly adopted for approximating general output errors in the context of a posteriori
adaptivity [16, 4, 6, 34, 40, 26], model-reduction adaptivity [9], and model-reduction error
estimation [32, 8, 39, 28]. The latter references compute adjoint solutions in order to improve
the accuracy of ROM output-error bounds. The computation of these adjoint solutions entails
a low-dimensional linear solve; thus, they are efficiently computable and can potentially serve
as error indicators for the ROMES method.

The main idea of dual-weighted-residual error estimation is to approximate the output
error to first-order using the solution to a dual problem. For notational simplicity in this
section, we drop dependence on the inputs µ.

To begin, we approximate the output arising from the (unknown) high-fidelity state u to
first order about the ROM-approximated state V û:

(3.8) g (u) ≈ g (V û) +
∂g

∂u
(V û) (u− V û)
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with g : Rn → R and ∂g
∂u : Rn → R1×n. Similarly, we can approximate the residual to first

order about the approximated state as

(3.9) 0 = r (u) ≈ r (V û) +
∂r

∂u
(V û) (u− V û) ,

where r : Rn → Rn with ∂r
∂u : Rn → Rn×n. Solving for the error yields

(3.10) (u− V û) ≈ −
[
∂r

∂u
(V û)

]−1

r (V û) .

Substituting (3.10) in (3.8) leads to

(3.11) g (u)− g (V û) ≈ yTr (V û) ,

where the dual solution y ∈ Rn satisfies

(3.12)
∂r

∂u

t

(V û)y = − ∂g
∂u

t

(V û) .

Approximation (3.11) is first-order accurate; therefore, it is exact in the case of linear outputs
and a linear residual operator. In the general nonlinear case, this approximation is accurate
in a neighborhood of the ROM-approximated state V û.

Because we would like to avoid high-dimensional solves, we approximate y as the reduced-
order dual solution yred := Y ŷ ∈ Rn, where ŷ satisfies

(3.13) Y T ∂r

∂u

t

(V û)Y ŷ = Y T ∂g

∂u

t

(V û) ,

and Y ∈ Rn×py with py � n is a reduced basis (in matrix form) for the dual system. Sec-
tion S1.3.2 provides details on the construction of Y for elliptic PDEs. Substituting the
approximation yred for y in (3.11) yields a cheaply computable error estimate

(3.14) g (u)− g (V û) ≈ ytredr (V û) .

This relationship implies that one can construct an accurate, cheaply computable ROMES
model for general-output error δ = δs = g(u)−g(V û) by employing indicators ρ = ytredr (V û)
and transformation function d = idR the identity function over R.

Remark 3.2 (Uncertainty control for dual-weighted-residual error indicators). The accuracy of
the reduced-order dual solution can be controlled by changing py—the dimension of the dual
basis Y . In general, one would expect an increase in py to lead to a lower-variance ROMES
surrogate at the expense of a higher dimensional dual problem (3.13). The experiments in
Section 5.6 highlight this uncertainty-control attribute.

3.3. Probabilistically rigorous error bounds. Clearly, the ROMES surrogate does not
strictly bound the error, even when error bounds are used as indicators. That is, the mean
probability of overestimation is generally less than one

(3.15) c :=
1

|P|

∫

µ∈P
P[m̃(ρ(µ)) > d(δ(µ))]dµ < 1.
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This frequency of overestimation depends on the probability distribution of the random
variable m̃(ρ). Using the machine learning methods proposed in the next section, we infer
normally distributed random variables

(3.16) m̃(ρ) ∼ N (ν(ρ), σ2(ρ))

with mean ν(ρ) and variance σ2(ρ). If the model is perfectly validated, then the mean
probability of overestimation is c = 0.5. However, knowledge about the distribution of the
random variable can be used to control the overestimation frequency. In particular, the
modified surrogate

(3.17) m̃c(ρ) := m̃(ρ) +mLB(ρ, c)

enables probabilistic rigor : it bounds the error with mean specified probability c assuming the
model is perfectly validated. Here, mLB fulfills

(3.18) P[X > mLB(ρ, c)] = c, for X ∼ N (0, σ2(ρ)).

This value can be computed as

(3.19) mLB(ρ) =
√

2σ(ρ)erf−1 (2c− 1)

where erf−1 is the inverse of the error function.

4. Gaussian processes. This section describes the two methods we employ to construct
the stochastic mapping m̃ : ρ(µ) 7→ d̃:

(i) Gaussian process kernel regression (i.e., kriging) [35] and
(ii) the relevance vector machine (RVM) [38].

Both methods are examples of supervised learning methods that generate a stochastic process
from a set of N training points for independent variables x := (xn)Nn=1 and a dependent vari-
able y := (yn)Nn=1. Using these training data, the methods generate predictions ỹ(x∗m; θML),
m = 1, . . . ,M associated with a set of M prediction points x∗ := (x∗m)Mm=1. Here, θML

denotes hyperparameters that are inferred using a Bayesian approach; the predictions are
random variables with a multivariate normal distribution.

In the context of ROMES, the independent variables correspond to error indicators xn =
ρ(µn) with µn ∈ P, n = 1, . . . , N and the dependent variable corresponds to the (transformed)
reduced-order-model error such that yn = d(δ(µn)), n = 1, . . . , N . To make this paper as self-
contained as possible, the following sections briefly present and compare the two approaches.

4.1. GP kernel method. A Gaussian process is defined as a collection of random variables
such that any finite number of them has a joint Gaussian distribution. The GP kernel method
constructs this Gaussian process via Bayesian inference using the training data and a specified
kernel function. To begin, the prior distribution is set to

(4.1) ỹprior(x) ∼ N
(
0,K (x,x) + σ2IN+M

)
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with x := (xi)
N+M
i=1 = (x,x∗). Here, the GP kernel assumes that the covariance between any

two points can be described analytically by a kernel k with additive noise ε ∼ N (0, σ2IM+N )
such that

(4.2) K(x,x) =
(
k(xi,xj)

)
1≤i,j≤N+M

.

In this work, we employ the most commonly used squared-exponential-covariance kernel

k(xi,xj) = exp

(
−‖xi − xj‖

2
2

2l2

)
,(4.3)

which induces high correlation between geometrically nearby points. Here, l ∈ R is the ‘width’
hyperparameter.

Assuming the predictions are generated as independent samples from the stochastic pro-
cess,3 the GP kernel method then generates predictions for each point x∗ ∈ x∗. These predic-
tions correspond to random variables with posterior distributions ỹ(x∗; θ) ∼ N (ν(x∗), σ2(x∗))
with

ν(x∗) = K(x∗,x)
(
K(x,x) + σ2IN

)−1
y(4.4)

σ2(x∗) = Σ(x∗) + σ2(4.5)

Σ(x∗) = K(x∗,x∗)−K(x∗,x)
(
K(x,x) + σ2IN

)−1
K(x,x∗).(4.6)

More details on the derivation of these expressions can be found in Ref. [35, ch 2.2].
The hyperparameters θ := (l2, σ2) can be set to the maximum-likelihood values θML

computed as the solution to an optimization problem

(4.7) θML = arg max
θ
L(θ)

with the log-likelihood function defined as

(4.8) L(l2, σ2) = −1

2
yt
(
K(x,x; l2) + σ2IN

)−1
y − 1

2
log
∣∣K(x,x; l2) + σ2IN

∣∣− N

2
log 2π.

For details on the derivation of the log likelihood function and problem (4.7), we refer to
Ref. [35, ch 5.4].

Remark 4.1. The noise component σ2 of posterior covariance σ2(x∗) accounts for uncer-
tainty in the assumed GP structure. It plays a crucial role for the ROMES method: it ac-
counts for the non-uniqueness of the mapping ρ 7→ δ, as it is possible for δ(µi) 6= δ(µj) even if
ρ(µi) = ρ(µj). In particular, this noise component represents the ‘information loss’ incurred
by employing the error indicators in lieu of the system inputs as independent variables in the
GP. Therefore, this component can be interpreted as the inherent uncertainty in the error due
to the non-uniqueness of the mapping ρ 7→ δ.

3Typically in the GP literature, predictions at all points x∗ are generated simultaneously as a single sample
from the Gaussian process. In this work, we treat all predictions as arising from independent samples of the
GP.
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On the other hand, the remaining term Σ(x∗) of the posterior variance quantifies the
uncertainty in the mean prediction. This decreases as the number of training points increases.
Therefore, Σ(x∗) can be interpreted as the uncertainty due to a lack of training data.

For example, the multifidelity-correction approach employs ρ = µ and therefore should
be characterized by σ2 = 0, as the mapping µ 7→ δ is unique. However, due to the high-
dimensional nature of the system-input space P in many problems, the uncertainty due to lack
of training Σ(x∗) can be very large unless many training points are employed. On the other
hand, the ROMES method aims to significantly reduce Σ(x∗) by employing a small number of
indicators, albeit at the cost of a nonzero σ2.

In light of this remark, we will employ two different types of ROMES models: one that
includes the uncertainty due to a lack of training data (i.e., variance σ2(x∗)), and one that
neglects this uncertainty (i.e., variance σ2).

4.2. Relevance vector machine (RVM) method. The RVM [38] is based on a para-
meterized discretization of the predictive random variable

(4.9) ỹ(x) =
K∑

k=1

wkφk(x) + ε = φ(x)tw + ε,

with specified basis functions φ(x) := [φ1(x) · · · φK(x)]t ∈ RK , a corresponding set of ran-
dom variables w := [w1 · · · wK ]t ∈ RK , with wk ∼ N (0, β2

k) for k = 1, . . . ,K and noise
ε ∼ N (0, σ2). The hyperparameters β = [β1 · · · βK ]t ∈ RK define the prior probability
distribution, and are usually chosen by a likelihood maximization over the training samples.
Radial basis functions

(4.10) φRBFk (x) = exp

(
− 1

r2
‖x̄k − x‖22

)
, k = 1, . . . ,K

constitute the most common choice for basis functions. For the ROMES method, we often ex-
pect a linear relationship between the indicators and true errors, likely with a small-magnitude
high-order-polynomial deviation. Therefore, we also consider Legendre polynomials [1, Ch.8]

(4.11) φLebk (x) = Pk(x), k = 1, . . . ,K.

Note that both sets of basis functions are dependent on the training data: while the center-
ing points x̄k, k = 1, . . . ,K in the radial basis functions can be chosen arbitrarily, they are
typically chosen to be equal to the training points. The domain of the Legendre polynomials,
on the other hand, is nominally [−1, 1]; therefore the independent variables must be appro-
priately scaled to ensure the range of training and prediction points (x,x∗) is included in this
interval.

The RVM method also employs a Bayesian approach to construct the model from training
data. In particular, the vector of hyperparameters β affects the variance of the Gaussian
random variables w. If these hyperparameters are computed by a maximum-likelihood or a
similar optimization algorithm, large values for these hyperparameters identify insignificant
components that can be removed. Therefore, in the ROMES context, the RVM can be used
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Figure 3. Domain and sample solution u(µ) for the thermal-block problem.

to filter out the least significant error indicators. Apart from this detail, the RVM can be
considered a special case of the GP kernel method with kernel

(4.12) k(xi,xj) =
K∑

k=1

1

βk
φk(xi)φk(xj).

5. Numerical experiments. This section analyzes the performance of the ROMES method
on Poisson’s equation with nine system inputs, using the reduced-basis method to generate
the reduced-order model. First, Section 5.1 introduces the test problem. Section 5.2 discusses
implementation and validation of the ROMES models. Section 5.3 compares the ROMES
method to the multifidelity-correction approach characterized by employing the model inputs
as error indicators. Section 5.4 compares the ROMES stochastic error estimate to the error
bound given by the reduced-basis method. Section 5.5 compares the performance of the two
machine-learning algorithms: the Gaussian process kernel method and the relevance vector
machine. Finally, Section 5.6 considers non-compliant and multiple output functionals, which
ROMES handles via dual-weighted-residual error indicators.

5.1. Problem setup. Consider a finite-element model of heat transport on a square do-
main Ω := ∪9

i=1Ωi composed of nine parameterized materials. The block is cooled along the
top boundary to a reference temperature of zero, a nonzero heat flux is specified on the bottom
boundary, and the leftmost boundary is adiabatic. The compliant output functional for this
problem is defined as the integral over the Neumann domain ΓN1

(5.1) ḡ(u(µ)) =

∫

ΓN1

u(µ)dx, µ ∈ P,

where the parameter domain is set to P = [0.1, 10]9 and u is the continuous representation of
the finite-element solution. The state variable u(µ) ∈ X = H1

0 :=
{
w ∈ H1(Ω) | w|ΓD

= 0
}

fulfills the weak form of the parameterized Poisson’s equation: find u(µ) ∈ X, such that

(5.2) a(u(µ), v) = f(v) for all v ∈ X.

Here, the bilinear form a : X ×X → X and the functional f : X → X are defined as

(5.3) a(u, v) :=

∫

Ω
b(x;µ)∇u(µ) · ∇v dx, f(v) :=

∫

ΓN1

v dx
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with boundary conditions

∇b(x;µ)u(µ) · n = 0 on ΓN0 , ∇b(x;µ)u(µ) · n = 1 on ΓN1 .(5.4)

We define the coefficient function b : Ω× P → R as

(5.5) b(x;µ) =
9∑

i=1

µi1Ωi (x) ,

where µi denotes the ith component of the parameter vector µ, and the indicator function
1A (x) = 1 if x ∈ A and is zero otherwise. Figure 3 depicts the composition of the domain
and the location of the boundary conditions.

By replacing the infinite-dimensional function space X with the (finite) n-dimensional
finite-element space Xh ⊂ X in problem (5.2), one can compute the parameter-dependent
state function uh(µ) ∈ Xh represented by vectors containing the function’s degrees of freedom
u(µ) ∈ Rn (see Section S1.1). In the experiments, the domain is discretized by triangular finite
elements, which results in a finite-element space Xh of dimension n = 104. The high-fidelity
output (in the notation of Section 2.1) is then g(u(µ)) := ḡ(uh(µ)), µ ∈ P.

As described in Section S1.4, we employ a greedy algorithm4 to generate a reduced-basis
space Xred ⊂ Xh of dimension p� n. The algorithm employs a training set of 100 randomly
selected points (i.e., card (Pgreedy) = 100 in Section S1.4), until the maximum computed error
bound in the training set is less than 1; it stops after p = 11 iterations.

Replacing Xh with Xred in Eq. (5.2) leads to reduced state functions ured(µ) ∈ Xred for
all µ ∈ P. As before, these solutions can be represented by vectors ured(µ) := V û(µ) ∈ Rn,
where V ∈ Rn×p is the discrete representation of a basis for the function space Xred.

In the following, we analyze two types of error: (i) the energy norm of the state-space error
|||δu||| = |||u− ured||| := a(uh − ured, uh − ured) and (ii) the output error δs = g(uh)− g(ured).
Because the output functional in this case is compliant (i.e., g = f and a is symmetric), the
output error is always non-negative; see Eq. (S1.20) of Section S1.3. For more details regard-
ing the finite-element discretization, the reduced-order-model generation, and error bounds,
consult Section S1 of the Supplementary Materials.

5.2. ROMES implementation and validation. We first compute ROMES surrogates for
the two errors |||δu||| and (compliant) δs. As proposed in Section 3.2.1, the three ROMES
ingredients we employ are: 1) log-residual-norm error indicators ρ(µ) = log(r(µ)), 2) a loga-
rithmic transformation function d = log, and 3) both the GP kernel and the RVM supervised
machine-learning methods. To train the surrogates, we compute |||δu(µ)|||, δs(µ), and ρ(µ)
for µ ∈ P̄ ⊂ P with card

(
P̄
)

= 2000. The first N = 100 points comprise the ROMES
training set {µ1, . . . ,µN} =: Plearn ⊂ P̄ and the following 1900 points define a validation set
Pvalidation ⊂ P̄; note that the validation set was not used to construct the error surrogates.
Reported results relate to statistics computed over this validation set.

For the kernel method, we employ the squared exponential covariance kernel (4.3). For
the RVM method, we choose Legendre polynomials Pk as basis functions, as we expect a

4 All reduced-basis computations are conducted with the reduced-basis library RBMatlab (http://www.
morepas.org/software/).
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Figure 4. Visualization of ROMES surrogates (δ = |||δu||| and ‖δu‖X , ρ = log r, d = log), computed using
N = 100 training points and the (i) GP kernel method and (ii) RVM.

linear relationship between the indicators and true errors (see Section 4.2). Because Legendre
polynomials are defined on the interval [−1, 1], we must transform and scale this domain to
span the possible range of indicator values. For this purpose, we apply the heuristic of setting
the domain of the polynomials to be 20% larger than the interval bounded by the smallest
and largest indicator values:

(5.6) [ρmin − 0.1(ρmax − ρmin),ρmax + 0.1(ρmax − ρmin)] ,

where ρmin = minµ∈Plearn
ρ(µ) and ρmax = maxµ∈Plearn

ρ(µ). We include Legendre polynomi-
als of orders 0 to 4; however, the RVM method typically discards the higher order polynomials
due to the near-linear relation between indicators and errors.

Figure 4 depicts the ROMES surrogate |̃||δu||| generated by both machine-learning methods

using all 100 training points. For comparison, we also create ROMES surrogates ‖̃δu‖X for
errors in the parameter-independent norm ‖·‖X of the state space X = H1

0 . In addition to
the expected mean of the inferred surrogate, the figure displays two 95%-confidence intervals
for the prediction (see Remark 4.1):

(i) The darker shaded interval corresponds to the confidence interval arising from the
inherent uncertainty in the error due to the non-uniqueness of the mapping ρ 7→ |||δu|||, i.e.,
the inferred variance σ2 of Eq. (4.5).

(ii) The lighter shaded interval also includes the ‘uncertainty in the mean’ due to a lack
of training data, i.e., Σ of Eq. (4.5). With an increasing number of training points, this area
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should be indistinguishable from the darker one.

All ROMES models find a linear trend between the indicators and the errors, where the
variance is slightly larger for the parameter-independent norm. This larger variance can be
attributed to the larger range of the coercivity constants the parameter-independent norm
(see Section S1.3). For this example, however, both ROMES are functional. In the following
examples, we focus on the energy norm only.

Note that the ‘uncertainty in the mean’ is dominant for the RVM surrogate. This can
be explained as follows: the high-order polynomials have values close to zero near the mean
of the data. As such, the training data are not very informative for the coefficients of these
polynomials. This results in a large inferred variance for those coefficients. Section 5.5 further
compares the two machine-learning methods; due to its superior performance, we now proceed
with the kernel method.

We now assess the validity of the Gaussian-process assumptions underlying the ROMES

surrogates |̃||δu||| and δ̃s, i.e., Condition 3 of Section 3.1. From the discussion in Remark 4.1,
we know if the underlying GP model form is correct, then as the number of training points
increases, the uncertainty about the mean decreases and the set {D(µ) | µ ∈ Pvalidation} with

(5.7) D(µ) := d (|||δu(µ)|||)− E
[
d
(
|̃||δu|||(ρ(µ))

)]
= d (|||δu(µ)|||)− ν (ρ(µ))

should behave like samples from the distribution N (0, σ2). Figure 5 reports this validation
test and verifies that this condition does indeed hold for a sufficiently large number of training
points.

Further, we can validate the inferred confidence intervals as proposed in Eq. (3.1). The
table within Figure 5 reports ωvalidation (ω) (see Eq. (3.2)), which represents the frequency of
observed predictions in the validation set that lie within the inferred confidence interval Cω.
We declare the ROMES model to be validated, as ωvalidation (ω) ≈ ω for several values of ω as
the number of training points increases.

The results for the ROMES surrogate δ̃s are very similar to those presented in Figure
5 and will be further discussed in Section 5.3. Note that the inferred Gaussian process is
well-converged with a moderately sized training set consisting of only N = 35 points.

5.3. Output error: comparison with multifidelity correction. As discussed in Section

3.2, multifidelity-correction methods construct a surrogate δ̃s,MF of the output error using the
system inputs as error-surrogate inputs, i.e., δ = δs, ρ = µ, and d = idR. In this section, we
construct this multifidelity correction surrogate using the same GP kernel method as ROMES.
Ref. [29] demonstrated that this error surrogate fails to improve the ‘corrected output’ when
the low-fidelity model corresponds to a reduced-order model. We now verify this result and
show that—in contrast to the multifidelity correction approach—the ROMES surrogate δ̃s
constructed via the GP kernel method with δ = δs, ρ = log r, and d = log yields impressive
results: on average, the output ‘corrected’ by the ROMES surrogate reduces the error by an
order of magnitude, and the Gaussian-process assumptions can be validated. The validation
quality improves as the number of training points increases, but a moderately sized set of only
N = 20 training points leads to a converged surrogate.
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0.95 0.68 0.89 0.92 0.93
0.98 0.76 0.93 0.95 0.96
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Figure 5. Gaussian-process validation for the ROMES surrogate (GP kernel, δ = |||δu|||, ρ = log r,
d = log) with a varying number of training points N . The histogram corresponds to samples of D(µ) and the
red curve depicts the probability distribution function N (0, σ2). The table reports how often the actual error
lies in the inferred confidence intervals.

The reason multifidelity correction fails for most reduced-order models is twofold. First,
the mapping µ 7→ δs can be highly oscillatory in the input space. This behavior arises from the
fact the the reduced-order model error is zero at the (greedily-chosen) ROM training points but
grows (and can grow quickly) away from these points. Such complex behavior requires a large
number of error-surrogate training points to accurately capture. In addition, the number
of system inputs is often large (in this case nine); this introduces curse-of-dimensionality
difficulties in modeling the error. Figure 6(ii) visualizes this problem. The depicted mapping
between the first two parameter components µ1, µ2 and the output error δs(µ) displays no
structured behavior. As a result, there is no measurable improvement of the corrected output

sred + δ̃s,MF over the evaluation of the ROM output sred alone.

In order to quantify the performance of the error surrogates, we introduce a normalized
expected improvement

(5.8) I(δ̃,µ) :=

∣∣∣∣∣∣

δs(µ)−mode
(
δ̃(ρ(µ))

)

δs(µ)

∣∣∣∣∣∣
.



M. DROHMANN, K. CARLBERG 19

10−4 10−3 10−2 10−1

10−4

10−3

10−2

Residual r/error bound

ou
tp

u
t

er
ro

r
δ s

(i) Output error v. ROMES indicators

0 5 10

10−4

10−3

10−2

Parameters (µ1, µ2)

ou
tp

u
t

b
ia

s
δ s

(ii) Output error v. system inputs

(r; δs)

(∆s; δs)

(µ1; δs(µ))

(µ2; δs(µ))

Figure 6. Relationship between (i) ROMES error indicators and the compliant-output error and (ii) the
first two parameter components and the (compliant) output error, visualized by evaluation of 200 random
sample points in the input space. Clearly, the observed structure in the former relationship is more amenable
to constructing a Gaussian process.

If this value is less than one, then the exected corrected output sred + δ̃ is more accurate than
the ROM output sred itself for point µ ∈ P, i.e., the additive error surrogate improves the
prediction of the ROM. On the other hand, values above one indicate that the error surrogate
worsens the ROM prediction.

Figure 7 reports the mean, median, standard deviations, and extrema for the expected
improvement (5.8) evaluated for all validation points Pvalidation and a varying number of

training points. Here, we also compare with the performance of the error surrogate δ̃uni,
which is defined as a uniform distribution on the interval

[
∆LB
s (µ),∆s(µ)

]
, where ∆LB

s (µ)
and ∆s(µ) are the the lower and upper bounds for the output error, respectively. Note that

δ̃uni does not require training data, as it is based purely on error bounds.

The expected improvement for the ROMES output-error surrogate I(δ̃s,µ) as depicted
in Figure 7(i) is approximately 0.2 on average, which constitutes an improvement of nearly
an order of magnitude. Further, the maximum expected improvement almost always remains
below 1; this implies that the corrected ROM output is almost always more accurate than the
ROM output alone.

On the other hand, the expected improvement generated by the error surrogate δ̃uni is
always greater than one, which means that its correction always increases the error. This
arises from the fact that the center of the interval

[
∆LB
s (µ),∆s(µ)

]
is a poor approximation

for the true error.

In addition, Figure 7(ii) shows that the expected improvement produced by the multifidelity-

correction surrogate I
(
δ̃s,MF,µ

)
is often far greater than one. This shows that the multifidelity-

correction approach is not well suited for this problem. Presumably, with (far) more training
points, these results would improve.

Again, we can validate the Gaussian-process assumptions underlying the error surrogates.
For N = 100 training points, Figure 8 compares a histogram of deviation of the true error
from the surrogate mean to the inferred probability density function. The associated table
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Figure 7. Expected improvement I(δ̃,µ) for a varying number of training points N : (i) ROMES (GP

kernel, compliant δ = δs, ρ = log r, d = log) with uniform distribution based on reduced-basis error bounds δ̃uni
and (ii) multifidelity correction (GP kernel, compliant δ = δs, ρ = µ, and d = idR). (1: no improvement, > 1:
error worsened, < 1: error improved).
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Figure 8. Gaussian-process validation for the ROMES surrogate (GP kernel, compliant δ = δs, ρ = log r,
d = log) and multifidelity-correction surrogate (GP kernel, compliant δ = δs, ρ = µ, and d = idR) using
N = 100 training points The histogram corresponds to samples of D(µ) and the red curve depicts the probability
distribution function N (0, σ2). The table reports how often the actual error lies in the inferred confidence
intervals. Clearly, this validation test fails for the multilfidelity-correction surrogate.

reports how often the validation data lie in inferred confidence intervals. We observe that
the confidence intervals are valid for the ROMES surrogate, but are not for the multifidelity-
correction surrogate, as the bins do not align with the inferred distribution. Figure 9 depicts
the convergence of these confidence-interval validation metrics as the number of training points
increases. As expected (see Remark 4.1) the ROMES observed confidence intervals more
closely align with the confidence intervals arising from the inherent uncertainty (i.e., σ2)
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as the number of training points increases, as this effectively decreases the uncertainty due
to a lack of training. In addition, only a moderate number of training points (around 20)
is required to generate a reasonably converged ROMES surrogate. On the other hand the
multifidelity-correction surrogate exhibits no such convergence when fewer than 100 training
points are used.
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Figure 9. Gaussian-process validation for the ROMES surrogate (GP kernel, compliant δ = δs, ρ = log r,
d = log) and multifidelity-correction surrogate (GP kernel, compliant δ = δs, ρ = µ, and d = idR) and a
varying number of training points N . The plots depict how often the actual error lies in the inferred confidence
intervals.

5.4. Reduced-basis error bounds. In this section, we compare the reduced-basis error

bound ∆µ
u (S1.14) with the probabilistically rigorous ROMES surrogates |̃||δu|||

c
(2.7) with

rigor values of c = 0.5 and c = 0.9 as introduced Section 3.3.5 The ROMES surrogate is
constructed with the GP kernel method and ingredients δ = |||δu|||, ρ = log r, and d = log.
As discussed in Section 2.3 the error-bound effectivity (2.7) is important to quantify the
performance of these bounds; a value of 1 is optimal, as it implies no over-estimation.

As the probabilistically rigorous ROMES surrogates |̃||δu|||
c

are stochastic processes, we
can measure their (most common) effectivity as

(5.9) η(c,µ) :=
mode

(
|̃||δu|||

c
(ρ(µ))

)

|||δu(µ)||| .

The top plots of Figure 10 report the mean, median, standard deviation, and extrema
of the effectivities η(0.5,µ) and η(0.9,µ) for all validation points µ ∈ Pvalidation. Again, we

compare with δ̃uni, which is a uniform distribution on an interval whose endpoints correspond
to the lower and upper bounds for the error |||δu(µ)|||. We also compare with the corresponding

5Note that c = 0.5 implies no modification to the original ROMES surrogate, as |̃||δu|||
0.5

= |̃||δu||| (see
Eqs. (3.17)–(3.19)).
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Figure 10. Validation of the probabilistically rigorous ROMES surrogates |̃||δu|||
c

(GP kernel, δ = |||δu|||,
ρ = log r, d = log) and comparison with RB error upper bound ∆µ

u and uniform distribution based on reduced-

basis error bounds δ̃uni. The top plots compare statistics of the effectivities η(c,µ) with c = 0.5 and c = 0.9 of
the probabilistically rigorous ROMES surrogates with the RB error-bound surrogates. The bottom plots compare
the frequency of error overestimation cvalidation with the desired value c (red line).

statistics for the effectivity of the RB error bound ∆µ
u. The lower bound for the coercivity

constant that is needed in the RB error bound ∆µ
u is chosen as the minimum over all parameter

components αLB(µ) = mini∈{1,...,9} µi. This simple choice is effective because the example is
affinely parameter dependent and linear [31, Ch. 4.2].

We observe that the ROMES surrogate yields better results than both the error bound ∆µ
u

(which produces effectivities roughly between one and eight) and the uniform distribution δ̃uni

(which produces mode effectivities roughly between one and four). The 50%-rigorous ROMES
surrogate has an almost perfect mean effectivity of 1 as desired. The 90%-rigorous surrogate
has a higher mean effectivity as expected; however, it is only slightly higher. Furthermore,
the effectivities of the ROMES surrogate exhibit a much smaller variance6 than both ∆µ

u

and δ̃uni. Finally, a moderate number (around 20) of training samples is sufficient to obtain
well-converged surrogates.

6The higher variance apparent between 45 and 53 training points can be explained by the fact that the
minimization algorithm for the log–likelihood function stops after it exceeds the maximum number of iterations.
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The bottom plots of Figure 10 report the frequency of error overestimation

(5.10) cvalidation :=
card ({µ ∈ Pvalidation | median (m̃ (ρ(µ))) > d(δ(µ))})

card (Pvalidation)

for the probabilistically rigorous ROMES surrogates (i.e., m̃ = |̃||δu|||
c
) as the number of train-

ing points increases to show that cvalidation ≈ c, which validates the rate of error overestimation
(see Eq. (3.15)). Note that the overestimation frequency cvalidation converges to its predicted
value c, which demonstrates that the rigor of the ROMES estimates can in fact be controlled.

5.5. Comparison of machine-learning algorithms. This section compares in detail the
ROMES surrogates generated using the two machine-learning methods introduced in Section
4. Recall that Figure 4 visualizes both surrogates. We observe that both methods work well
overall and generate well-converged surrogates with a modest number of training samples.
As previously mentioned, the GP kernel leads to a smaller inferred variance due to more
accurate and localized estimates of the mean. The RVM is characterized by global basis
functions that preclude it from accurately resolving localized features of the mean and lead to
large uncertainty about the mean (see Figure 4). On the other hand, the confidence intervals
computed with the RVM are (slightly) better validated.
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Figure 11. Gaussian-process validation for the ROMES surrogate using both the GP kernel method and
the RVM (δ = |||δu|||, ρ = log r, d = log) using N = 80 training points. The histogram corresponds to samples
of D(µ) and the red curve depicts the probability distribution function N (0, σ2). The table reports how often
the actual error lies in the inferred confidence intervals.

Figure 11(i) and (ii) report the validation test, i.e., the frequency of deviations from the
inferred mean D(µ) (5.7) with a training sample containing N = 80 training points. We
observe a smaller inferred variance σ2 for the GP kernel method, which implies that the
mean is identified more accurately. In both cases, the validation samples align well with the
probability density function of the inferred distribution N (0, σ2).

The confidence intervals of this inferred distribution can be validated, and they turn out
to be (slightly) more realistic for the RVM method. The table within Figure 11 shows that the
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kernel method results are usually optimistic, i.e., the actual confidence intervals are smaller
than predicted. This effect can be corrected, however, by adding Σ(x∗) as an indicator of
the uncertainty of the mean as discussed in Remark 4.1. However, doing so for the RVM
prediction yields extremely wide confidence intervals due to the significant uncertainty about
the RVM mean (see Figure 4).
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Figure 12. Comparison of the effectivity η(0.5,µ) of ROMES surrogates (δ = |||δu|||, ρ = log r, d = log)
with the GP computed via (i) the GP kernel and (ii) the relevance vector machine method.

As the inferred variance is larger for the relevance vector machine, this also affects the per-
formance of effectivity and improvement measures for the error surrogates. Figure 12 depicts
statistics of η(0.5,µ) computed with both the methods, and we observe that all statistical
measures are significantly better for the kernel method estimate.

We conclude that while both methods produce feasible ROMES surrogates, the GP kernel
method produces consistently better results. In particular, the lower inferred variance implies
that a lower amount of epistemic uncertainty is introduced by the error surrogate (See con-
dition 2 from Section 3.1). This is critically important for many UQ tasks. Therefore, we
recommend the GP kernel method to construct ROMES surrogates.

5.5.1. Dependence on reduced-basis size. To assess the generalizability of the ROMES
method, we apply it to a ROM of higher fidelity, i.e., larger p. We construct two ROMES

surrogates: one for the state-space error |̃||δu||| (GP kernel, δ = |||δu|||, ρ = log r, d = log) and
one for the compliant-output error δ̃s (GP kernel, δ = δs, ρ = log r, d = log).

We increase the reduced-basis size by decreasing the maximum error over the training set
from 1.0 to 1.0×10−3 and applying the greedy method. The resulting reduced-basis dimension
is p = 62. Figure 13 reports the error data and ROMES surrogates. Comparing the leftmost
plot of Figure 13 with Figure 4(i) and the rightmost plot of Figure 13 with Figure 6(i) reveals
that while the errors are several orders of magnitude smaller for the current experiments, the
data (and the resulting ROMES surrogates) exhibit roughly the same structure as before.

Figure 14 reports the performance of these surrogates. Comparing the leftmost plot of
Figure 14 with Figure 12(i) shows that the state-space error surrogate exhibits nearly identical
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Figure 13. Visualization of ROMES surrogates (δ = |||δu||| and δs, ρ = log r, d = log), computed using
N = 100 training points and the GP kernel method for a higher dimensional ROM with p = 62.

20 40 60 80 100

1

2

3

number of training points N

eff
ec

ti
v
it

y
η
(0
.5
,µ

)

20 40 60 80 100
0

1

2

3

number of training points N

im
p

ro
ve

m
en

t
I
(δ̃
,µ

)

mean ± std median minimum maximum

Figure 14. Effectivity η(0.5,µ) of ROMES surrogate (δ = |||δu|||, ρ = log r, d = log) and expected

improvement I(δ̃,µ) of ROMES surrogate (GP kernel, compliant δ = δs, ρ = log r, d = log) for a higher
dimensional ROM with p = 62 and a varying number of training points N .

convergence for the larger- and smaller-dimension reduced-order models. As in the experi-
ments of Section 5.4, the value of mode (η(0.5,µ)) is close to 1 in the mean. Comparing
the rightmost plot of Figure 14 with Figure 7(i) shows that the expected improvement for the
output-error correction with the surrogate δ̃s is around 0.2 in the mean for both the larger- and
smaller-dimension reduced-order models. However, for the larger-dimension reduced-order
model, more training points are required to reduce the occurrence of improvement factors
larger than 1. This is an artifact of the low errors already produced by the larger-dimension
ROM itself (i.e., small denominator in Eq. (5.8)).

We therefore conclude that the ROMES method is applicable to ROMs of different fidelity.
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Figure 15. Relationship between between dual-weighted-residual indicators ρ1 = yred,1(µ)tr (ured;µ) and
errors in the (non-compliant) first output δs1 .

5.6. Multiple and non-compliant outputs. Finally, we assess the performance of ROMES
on a model with multiple and non-compliant output functionals as discussed in Section 3.2.2.
For this experiment, we set two outputs to be temperate measurements at points x1 and x2:

si (µ) := gi (u (µ)) := ḡi (u (µ)) =

∫

Ω
δDirac(x− xi)u (xi;µ) dx = u (xi;µ) , i = 1, 2.(5.11)

where δDirac denotes the Dirac delta function. In this case, we construct a separate ROMES
surrogates for each output error δ̃s1 and δ̃s2 . As previously discussed, we use dual-weighted
residuals as indicators ρi(µ) = yred,i(µ)tr (ured;µ), i = 1, 2 and no transformation d ≡ idR.
This necessitates the computation of approximate dual solutions, for which dual reduced-basis
spaces must be generated in the offline stage. The corresponding finite element problem can
be found in Eq. (S1.28), where Eq. (5.11) above provides the right-hand sides. The algebraic
problems can be inferred from Eq. (S1.29), where the discrete right-hand sides are canonical
unit vectors because the points x1 and x2 coincide with nodes of the finite-element mesh.

Like the primal reduced basis, the dual counterpart can be generated with a greedy algo-
rithm that minimizes the approximation error for the reduced dual solutions.

To assess the ability for uncertainty control with the dual-weighted-residual indicators (see
Remark 3.2) we generate three dual reduced bases of increasing fidelity: 1) error tolerance of
1 (basis sizes py of 10 and 11), 2) error tolerance of 0.5 (basis sizes py of 15 and 17), 3) error
tolerance of 0.1 (basis sizes py of 20 and 23).

To train the surrogates, we compute δs1(µ), δs2(µ), ρ1(µ) (of varying fidelity), ρ2(µ) (of
varying fidelity), for µ ∈ P̄ ⊂ P with card

(
P̄
)

= 500. The first T = 100 points define the
training set Plearn ⊂ P̄ and the following 400 points constitute the validation set Pvalidation ⊂
P̄.

Figure 15 depicts the observed relationship between indicators ρ1(µ) (of different fidelity)
and the error in the first output δs1(µ). Note that as the dual-basis size py increases, the
output error exhibits a nearly exact linear dependence on the dual-weighted residuals. This
is expected, as the residual operator is linear in the state. Therefore, the RVM with a linear
polynomial basis produces the best (i.e., minimum variance) results for the ROMES surrogates
in this case.
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Figure 16 reflects the necessity of employing a large enough dual reduced basis to compute
the dual-weighted-residual error indicators. For a small dual reduced basis, there is almost no
improvement in the mean, and only a slight improvement in the median; in some cases, the
‘corrected’ outputs are actually less accurate. However, the most accurate dual solutions yield
a mean and median error improvement of two orders of magnitude. This illustrates the ability
and utility of uncertainty control when dual-weighted residuals are used as error indicators.
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Figure 16. Expected improvement I(δ̃,µ) for ROMES surrogate (RVM, δ = δs, ρi = yred,i(µ)tr (ured;µ),
i = 1, 2, d = idR) for a varying number of training points T and different dual reduced-basis-space dimensions.
Compare with Figure 7 (1: no improvement, > 1: error worsened, < 1: error improved).

Table 17 reports validation results for the inferred confidence intervals. While the valida-
tion results are quite good (and appear to be converging to the correct values), they are not
as accurate as those obtained for the compliant output.

6. Conclusions and outlook. This work presented the ROMES method for statistically
modeling reduced-order-model errors. In contrast to rigorous error bounds, such statistical
models are useful for tasks in uncertainty quantification. The method employs supervised
machine learning methods to construct a mapping from existing, cheaply computable ROM
error indicators to a distribution over the true error. This distribution reflects the epistemic
uncertainty introduced by the ROM. We proposed ROMES ingredients (supervised-learning
method, error indicators, and transformation function) that yield low-variance, numerically
validated models for different types of ROM errors.
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Validation frequency ωvalidation (ω)

first output second output

predicted ω N = 29 N = 53 N = 76 N = 100 N = 29 N = 53 N = 76 N = 100

0.8 1.00 0.83 0.82 0.82 1.00 0.82 0.87 0.88
0.9 1.00 0.87 0.86 0.86 1.00 0.87 0.91 0.92
0.95 1.00 0.89 0.89 0.89 1.00 0.89 0.93 0.93
0.98 1.00 0.90 0.91 0.90 1.00 0.92 0.94 0.95
0.99 1.00 0.92 0.92 0.91 1.00 0.94 0.95 0.96

Figure 17. Gaussian-process validation for the ROMES surrogates (RVM, δ = δs, ρi = yred,i(µ)tr (ured;µ),
i = 1, 2, d = idR). The table reports how often the actual error lies in the inferred confidence intervals. The
largest dual reduced-basis space dimensions (py = 20 and py = 23) are used to compute the error indicators. .

For normed outputs, the ROMES surrogates led to effectivities with low variance and
means close to the optimal value of one, as well as a notion of probabilistic rigor. This is
in contrast to existing ROM error bounds, which exhibited mean effectivities close to ten;
this improvement will likely be more pronounced for more complex (e.g., nonlinear, time
dependent) problems. Further, the ROMES surrogates were computationally less expensive
than the error bounds, as the coercivity-constant lower bound was not required.

For general outputs, the ROMES surrogate allowed the ROM output to be corrected,
which yielded a near 10x accuracy improvement. Further, the uncertainty in this error could be
controlled by modifying the dimension of the dual reduced basis. On the other hand, existing
approaches (i.e., multifidelity correction) that employ system inputs (not error indicators) as
inputs to the error model did not lead to improved output predictions. This demonstrated
the ability of ROMES to mitigate the curse of dimensionality: although the problem was
characterized by nine system inputs, only one error indicator was necessary to construct a
low-variance, validated ROMES surrogate.

We foresee the combination of ROMs with ROMES error surrogates to be powerful in
UQ applications, especially when the number of system inputs is large. Future work entails
integrating and analyzing the ROM/ROMES combination for specific UQ problems, e.g.,
Bayesian inference, as well as automating the procedure for selecting ROMES ingredients for
different problems. Future work will also involve integrating the ROMES surrogates into the
greedy algorithm for the reduced-basis-space selection; this has the potential to improve ROM
quality due to the near-optimal expected effectivities of the error surrogates.
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Chapter 5

The GNAT method for nonlinear model
reduction: error bound

This chapter presents an error bound for the Gauss–Newton with approximated tensors (GNAT)
nonlinear model-reduction method. The bound allows the GNAT error to be quantified and also
highlights its advantages in terms of minimizing components of the bound (relative to other se-
quences of approximate solutions). This work has been published as part of the following journal
article: K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem. “The GNAT method for nonlinear
model reduction: Effective implementation and application to computational fluid dynamics and
turbulent flows,” Journal of Computational Physics, Vol. 242, p. 623647 (2013).
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Kevin Carlberg
Sandia National Laboratories

7011 East Ave, MS 9159, Livermore, CA 94550.∗

Abstract

The Gauss–Newton with approximated tensors (GNAT) method is a nonlinear model-reduction
method that operates on fully discretized computational models. It achieves dimension reduction by
a Petrov–Galerkin projection associated with residual minimization; it delivers computational efficency
by a hyper-reduction procedure based on the ‘gappy POD’ technique. Originally presented in Ref. [1],
where it was applied to implicit nonlinear structural-dynamics models, this method is further developed
here and applied to the solution of a benchmark turbulent viscous flow problem. This paper develops
global state-space error bounds that justify the method’s design and highlight its advantages in terms of
minimizing components of these error bounds.

1 Error bounds

Here, error bounds are developed for any discrete nonlinear model-reduction method assuming that time
discretization is performed using the backward-Euler scheme. These bounds highlight the advantages of the
GNAT method, as it minimizes components of these error bounds.

The following ODE is considered to considered to be the full-order model for the problem at hand:

dw

dt
= F (w(t), t;µ)

w(0) = w0(µ).
(1)

When Eq. (1) is time discretized using the backward-Euler scheme, the residual corresponding to time
step n, input parameters µ, and the sequence of states computed by the high-dimensional CFD model wn,
n = 0, . . . , nt can be written as

Rn(wn+1;µ) = wn+1 − wn −∆tF (wn+1, tn+1;µ). (2)

Proposition 1.1 Assume f : (w, t;µ) 7→ w−∆tF (w, t;µ) satisfies the following inverse Lipschitz continuity
condition for the online point µ̆ ∈ D

‖f(w, tn; µ̆)− f(y, tn; µ̆)‖
‖w − y‖ ≥ ε > 0, ∀n ∈ {1, . . . , nt}. (3)

Furthermore, assume that the high-dimensional CFD model employs the backward-Euler scheme for time-
integration and computes states wn, n = 1, . . . , nt that satisfy an absolute tolerance for the residual

‖Rn(wn+1; µ̆)‖ ≤ εNewton, ∀n ∈ {0, . . . , nt − 1}. (4)

Then, for any sequence of states w̃n, n = 0, . . . , nt satisfying w̃0 = w0, a global error bound for the
approximation of the state at the n-th time step is given by

‖wn − w̃n‖ ≤
n∑

k=1

akbn−k ≤
n∑

k=1

akcn−k ≤
n∑

k=1

akdn−k, (5)

∗Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States
Department of Energy under contract DE-AC04-94-AL85000.
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where

a ≡ sup
n∈{1,...,nt}

sup
w 6=y

‖w − y‖
‖f(w, tn; µ̆)− f(y, tn; µ̆)‖

bn ≡ εNewton + ‖R̄n(w̃n+1; µ̆)‖
cn ≡ εNewton + ‖PR̄n(w̃n+1; µ̆)‖+ ‖(I − P )R̄n(w̃n+1; µ̆)‖ (6)

dn ≡ εNewton + ‖PR̄n(w̃n+1; µ̆)‖+ ‖R−1‖‖ (I − P) R̄n(w̃n+1; µ̆)‖
P ≡ ΦR [ZΦR]

+
Z

P ≡ ΦRΦT
R

ZΦR ≡ QR,

where Q ∈ Rni×nR , R ∈ RnR×nR , and R̄n(w;µ) = w − w̃n −∆tF (w, tn;µ).

A provides a proof of the above error bounds. Their consequences include:

• Justification for the minimum-residual approach taken by the tier II Petrov–Galerkin ROM. Namely, by
computing w̃n+1 = arg min

w̄∈wn+1(0)+Y
‖R̄n(w̄; µ̆)‖, the tier II Petrov–Galerkin ROM selects the element

of the trial subspace that minimizes bn, n = 1, . . . , nt. This in turn minimizes the tightest error bound
in (5).

• Justification for using ΦR = ΦJ in GNAT (snapshot-collection procedures 0 and 1). In this case, the
GNAT iterations are equivalent to applying the Gauss–Newton method for minimizing ‖PR̄n(w̃n+1; µ̆)‖.
As a result, GNAT computes w̃n+1 = arg min

w̄∈wn+1(0)+Y
‖PR̄n(w̄; µ̆)‖, which is the element of the trial

subspace that minimizes the second term of both cn and dn, n = 1, . . . , nt.

• Justification for computing ΦR via POD. When computed by POD, the basis ΦR is the orthogonal
basis of dimension nR that minimizes the average projection error over the set of residual snapshots;
this projection error appears as the last term of dn.

• The tightest bound in (5) is computable by the tier II Petrov–Galerkin ROM if the Lipschitz constant
a can be computed or estimated. This is due to the computability of bn: it requires only the tolerance
εNewton and the residual norm at each time step.

• The bound
n∑

k=1

akcn−k (resp.
n∑

k=1

akdn−k) is computable by GNAT if the Lipschitz constant a can be

computed or estimated and the projection error ‖(I−P )R̄n(w̃n+1; µ̆)‖ (resp. ‖(I−P)R̄n(w̃n+1; µ̆)‖) can
be computed or estimated. This is due to the computability of ‖PR̄n(w̃n+1; µ̆)‖ = ‖ [ZΦR]

+
ZR̄n(w̃n+1; µ̆)‖.

The projection error ‖(I − P )R̄n(w̃n+1; µ̆)‖ can be estimated by

‖(I − P )R̄n(w̃n+1; µ̆)‖ ≈ ‖(Φ′R [ZΦ′R]
+ − ΦR [ZΦR]

+
)ZR̄n(w̃n+1; µ̆)‖ (7)

=

∥∥∥∥∥

(
[ZΦ′R]

+ −
[

[ZΦR]
+

0(n′
R−nR)×ni

])
ZR̄n(w̃n+1; µ̆)

∥∥∥∥∥ ,

where Φ′R ≡
[
φ1
R · · · φ

n′
R

R

]
for some n′R > nR (following Ref. [2]). Alternatively, the projection error

‖(I − P)R̄n(w̃n+1; µ̆)‖ can be approximated by the sum of the squares of the singular values neglected
by ΦR (following Ref. [3]).

A Error bounds for the solution computed by a discrete nonlinear
model reduction method

This section proves the error bound (5) presented in Section 1. For the sake of notational simplicity, the
derivation presented here considers the approximation error arising from a given point in the input-parameter
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space and therefore omits µ from the arguments of the nonlinear functions. Rewriting the residual (2) in
this fashion leads to

Rn(wn+1) = wn+1 − wn −∆tF (wn+1, tn+1). (8)

Similarly, the residual at the the n-th time step arising from any sequence of approximate solutions w̃n,
n = 0, . . . , nt, e.g., generated by a discrete nonlinear ROM, for the same input parameters can be written as

R̄n(w̃n+1) = w̃n+1 − w̃n −∆tF (w̃n+1, tn+1). (9)

Subtracting (9) from (8) yields

Rn(wn+1)− R̄n(w̃n+1) = wn+1 − wn −∆tF (wn+1, tn+1)− w̃n+1 + w̃n + ∆tF (w̃n+1, tn+1). (10)

The above expression can be re-arranged as

wn+1 − w̃n+1 −∆tF (wn+1, tn+1) + ∆tF (w̃n+1, tn+1) = Rn(wn+1)− R̄n(w̃n+1) + wn − w̃n. (11)

Introducing f : (x, t) 7→ x−∆tF (x, t) and the inverse Lipschitz constant1

Ln
f ≡ sup

x 6=y

‖x− y‖
‖f(x, tn+1)− f(y, tn+1)‖ (12)

allows Eq. (11) to be transformed into the following bound on the local approximation error:

‖wn+1 − w̃n+1‖ ≤ Ln
f

(
εNewton + ‖R̄n(w̃n+1)‖+ ‖wn − w̃n‖

)
. (13)

Assuming that the initial approximation error is zero2 (w̃0 = w0), the inequality (13) leads to the following
result

‖wn − w̃n‖ ≤
n∑

k=1

akbn−k, (14)

where a = Lf ≡ supn∈{1,...,nt} Ln
f and

bn ≡ εNewton + ‖R̄n(w̃n+1)‖. (15)

From the triangle inequality, it follows that ‖R̄n(w̃n+1)‖ ≤ ‖PR̄n(w̃n+1)‖+ ‖ (I − P ) R̄n(w̃n+1)‖ for any
P . Hence, another bound for the approximation error is

‖wn − w̃n‖ ≤
n∑

k=1

akcn−k, (16)

where
cn ≡ εNewton + ‖PR̄n(w̃n+1)‖+ ‖(I − P )R̄n(w̃n+1)‖ (17)

and cn ≥ bn. The bound (16) is particularly interesting for the case where P = ΦR [ZΦR]
+
Z represents the

gappy POD operator because ‖PR̄n(w̃n+1)‖ = ‖ [ZΦR]
+
ZR̄n(w̃n+1)‖ is readily computable by GNAT.

In B, it is shown that an upper bound for the gappy POD approximation error is

‖ (I − P ) R̄n(w̃n+1)‖ ≤ ‖R−1‖‖(I − P)R̄n(w̃n+1)‖, (18)

where P = ΦRΦT
R defines the orthogonal projector onto range (ΦR), and ZΦR = QR is the thin QR factor-

ization of ZΦR with Q ∈ Rni×nR and R ∈ RnR×nR . Therefore from (18), it follows that yet another error
bound for the approximation error is

‖wn − w̃n‖ ≤
n∑

k=1

akdn−k, (19)

1Note that ε = 1
Ln

f
in Eq. (3).

2This is valid for both the Petrov–Galerkin and GNAT ROMs as they employ the same initial condition as the high-
dimensional model (See Algorithm ??).
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where
dn ≡ εNewton + ‖PR̄n(w̃n+1)‖+ ‖R−1‖‖ (I − P) R̄n(w̃n+1)‖. (20)

Because bn ≤ cn ≤ dn, it follows that a global bound for the approximation error at the n-th time step with
1 ≤ n ≤ nt is given by

‖wn − w̃n‖ ≤
n∑

k=1

akbn−k ≤
n∑

k=1

akcn−k ≤
n∑

k=1

akdn−k. (21)

B Error bound for the gappy POD approximation

This section establishes a bound for the error associated with the gappy POD approximation of a vector
g ∈ RN using a POD basis Φf ∈ RN×nf and a set of ni ≥ nf sample indices I that define the sample matrix
Z.3

Define g∗ ≡ Pg with P ≡ ΦfΦT
f as the orthogonal (i.e., optimal) projection of g onto range (Φf ). Also,

define the difference between g and its orthogonal projection onto range (Φf ) as e ≡ g − g∗. Finally, define
the gappy POD projection matrix P ≡ ΦgR

−1QTZ, where ZΦf = QR is the thin QR factorization of ZΦf

with Q ∈ Rni×nf and R ∈ Rnf×nf .
The gappy POD approximation of g is Pg = P (e+ g∗). It can also be written as

Pg = Pe+ g∗ (22)

because Pg∗ = g∗, as g∗ ∈ range (Φf ). Substituting g∗ = g − e into Eq. (22) yields (I − P )g = (I − P )e.
Therefore,

‖(I − P )g‖2 = ‖(I − P )e‖2 ≤ ‖(I − P )‖2‖e‖2. (23)

Because ‖I − P‖2 = ‖P‖2 for any projection matrix P not equal to 0 or I, it follows that

‖I − P‖2 = ‖P‖2 = ‖ΦgR
−1QTZ‖2 = ‖R−1‖2. (24)

The last equality follows from the fact that Φg, ZT , and Q have orthonormal columns. Substituting (24) in
(23) gives the result

‖(I − P )g‖2 ≤ ‖R−1‖2
∥∥∥ (I − P) g

∥∥∥
2
. (25)
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